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NEW DRUG CLASSES

Fungi are flourishing in man. Up to 7% of patients 
dying in European teaching hospitals have invasive
aspergillosis, and Candida spp are frequent causes of
nosocomial infection.1,2 Specific patient-groups have very
high frequencies of fungal infection: 15% of allogeneic
haemopoietic stem-cell transplant recipients have an
infection;3 about 20% of lung-transplant recipients are
colonised and infected;4 about 60% and 20% of AIDS
patients in the developed world have Pneumocystis carinii
pneumonia or oesophageal candidiasis, respectively;5

cryptococcal meningitis is present in about 30% of
people with AIDS in Africa and southeast Asia;6 and
Penicillium marneffei infections are present in about 30%
of people with AIDS in southeast Asia.7 Many factors
account for these substantial increases in infection,
including better management of other complications of
immunosuppression, novel and more aggressive
immunosuppressive regimens, enhanced survival in
intensive care, a high frequency of instrumentation and
catheterisation, more awareness by clinicians, better
diagnostic approaches, and increased use of antibiotics.

To date, only three classes of antifungal drugs have
been available for systemic fungal infections: the
polyenes (amphotericin B); the azoles (ketoconazole,
itraconazole, fluconazole, and voriconazole); and
flucytosine. Although many of these drugs have
advanced the management of fungal infections, failure
rates remain high,4 and emergence of intrinsically
resistant fungi is a growing problem.8,9 Introduction of
the echinocandins is, therefore, very welcome. Here, the
background to this new class of antifungal drug is
reviewed, as well as the data lending support to their
registration and their probable clinical use. 

Origins of the echinocandins
The lead compound for anidulafungin (LY303366; 
figure 1) was identified in 1974.10 In 1989, the compound
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that led to caspofungin (MK991) was reported,11 and  the
precursor of micafungin (FK463) was identified in 
1990.12 Several other echinocandin-like compounds 
have been described, some of which are semisynthetic
derivatives of the natural fermentation product, including
enfumafungin, the arbocandins, the papulacandins,
pneumocandin B, arundifungin, and HMR 3270 (chemi-
cally derived from deoxymulundocandin; Hodgson J,
Aventis Pharma, personal communication).13–17 A less
active echinocandin B analogue that got to clinical trials is
cilofungin, but this particular molecule was difficult to
prepare and the formulation was toxic. 

Glucan synthase protein complex
The target of the echinocandins is the synthetic cell-wall
enzyme complex �-1,3-D-glucan synthase.18 Fungal
cell-walls are rigid structures that consist of large
polysaccharides �-(1,3)-D-glucan, �-(1,4)-D-glucan,
�-(1,6)-D-glucan, chitin, mannan or galactomannan, and
� glucans and various glycoproteins.19,20 Although fungi are
eukaryotes like human beings, the cell-wall is not shared
by mammalian cells, and therefore represents a good
target for antifungal drugs.

Figure 2 is a diagrammatic representation of the glucan
synthase protein complex, and its regulatory network. The
short name of the gene encoding �-(1,3)-glucan synthase
is FKS1, and its deletion yielded a yeast phenotype that
was hypersensitive to tacrolimus.21 Many other mutant
phenotypes led to cloning of several genes that were all
found to be identical to FKS1.18,22 Diversity of phenotypes
led to the cloning of a closely related gene GSC2 (also
known as FKS2, which has 88% identity to FKS1 at the
aminoacid level).22 Deletion of both these genes is lethal in
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antifungal drugs suggests that combination antifungal therapy could become a general feature of the echinocandins,
particularly for invasive aspergillosis. 

New drug classes

Search strategy and selection criteria

All papers on echinocandins referenced in MEDLINE were
accessed and read. Keywords included the names of each drug
and their original code numbers, “Candida”, “Aspergillus”, and
“biofilms”. All conference abstracts from the Interscience
Conference on Antimicrobial Agents and Chemotherapy from
1998 onwards were also accessed. Additional information was
sought from public-access documents and press releases. 



synthesis. Thus, the pathways and interactions between
all regulatory proteins are complex, and they are not yet
fully understood with respect to cell-wall assembly. The
complexity is emphasised by the demonstration of
resistant mutants overexpressing a Golgi protein involved
in transport of cell-wall components (Sbe2p).28

This regulatory pathway is probably important in
understanding the absence of activity of the echinocandins
against Cr neoformans.29 The FKS1 gene in this organism is
single copy and essential. Binding of present
echinocandins could be poor because of structural
differences. However, substantial enhancement of
echinocandin activity arises in vitro against Cr neoformans
when calcineurin inhibitors such as tacrolimus are used in
combination.30 Tacrolimus-binding occurs through a
protein known as FKBP12, and when the gene coding for
this protein is deleted, Cr neoformans becomes sensitive to
caspofungin. This finding emphasises the importance of
the calcineurin pathway for echinocandin activity, at least
for some fungi, as it seems to be for azole activity.
Susceptibility and killing of Candida albicans is enhanced
by combination of fluconazole with ciclosporin.31

Chemistry
Echinocandins are large lipopeptide molecules. All
molecules in clinical use or development are amphiphilic
cyclic hexapeptides with an N-linked acyl lipid side-chain
and a molecular weight of about 1200.14,32 Their structures
are shown in figure 1. The aminoacid composition of 
these molecules is unusual, since dihydroxyornithine, 
4-hydroxyproline, dihydroxyhomotyrosine, and 3-hydroxy-

4-methylproline complement threonine
in the peptidic nucleus. Caspofungin
has a fatty-acid side-chain, micafungin
a complex aromatic side-chain (3,5-
diphenyl-substituted isoxazole), and
anidulafungin an alkoxytriphenyl
(terphenyl) side-chain. Presumably, the
side-chain intercalates with the
phospholipid bilayer of the cell
membrane. Caspofungin (acetate) is
freely soluble in water and methanol,
and slightly soluble in ethanol.33

Micafungin (sodium) is freely soluble
in water, whereas anidulafungin is not.

Formulations
All echinocandin preparations that
have been used to date are for
intravenous use only. Caspofungin is
licensed for use in the USA and most
of Europe, and micafungin in Japan
(table 1). Caspofungin is presented 
as a lyophylised white powder and
excipients include sucrose, mannitol,
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Saccharomyces cerevisiae, and mutations in FKS1 can
confer caspofungin resistance.23 Products of FKS1 and
FKS2 are, at present, thought to be alternate subunits of
the �-(1-3)-glucan synthase enzyme complex.24

Orthologues of FKS1 or FKS2 are recorded in all fungi
studied to date, with percentage identity varying from
56% (Cryptococcus neoformans) to 83% (Candida glabrata).
A catalytic subunit of �-(1,3)-glucan synthase is present in
and expressed during cell-wall formation of the cyst form
of Pneumocystis carinii.25 Substantial work has gone into
understanding where echinocandins bind to the glucan
synthase enzyme complex, but this question is not fully
resolved.

Control of �-(1,3)-glucan synthesis has been studied in
S cerevisiae and pathogenic fungi.26 FKS1 transcription is
cell-cycle regulated, and linked to cell-wall remodelling.
FKS2 transcription is calcineurin-dependent.14 A key
regulatory protein seems to be the product of RHO1,
which interacts not only with Fks proteins but also with
protein kinase C.27 This protein is a well studied regulator
of the mitogen-activated protein (MAP) kinase cascade
and the actin cytoskeleton assembly pathway in yeast.
Because of the interaction with multiple proteins, Rho1p
is thought to be a key switch, driving or arresting the
synthesis of �-(1,3)-glucan. Rho1 seems to be dependent
on guanine-nucleotide exchange factors, which are
provided by Rom1 and Rom2 proteins. Rom2p is
activated by the cell-wall-associated signalling
glycoproteins Wsc1p and Mid2p. Activation of Rho1p not
only activates �-(1,3) glucan synthase but also results in
activation of the MAP kinase cascade and affects actin
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Figure 1: Chemical structures of caspofungin, micafungin, and anidulafungin 
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Figure 2: Diagrammatic representation of the fungal cell membrane
Proteins forming the �-(1,3)-D-glucan synthase complex (Fks1p and Fks2p) are shown, together with
some proteins from the regulatory network.
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acetic acid, and sodium hydroxide.33 Once reconstituted,
this formulation has a pH of 6·6 and is incompatible with
dextrose. The drug is generally given by slow intravenous
infusion over about 1 h. Caspofungin can be stored
(refrigerated) for up to 24 h after reconstitution and
dilution before administration. Micafungin is prepared as
a powder ready for reconstitution. Excipients include
lactose, citric acid, and sodium hydroxide, and once
reconstituted the pH of micafungin for infusion is 5–6.
Reconstituted micafungin solution is stable at room
temperatures for 48 h, if protected from light.
Micafungin can be administered with any intravenous
infusion. Anidulafungin is provided as a lyophilised
powder for reconstitution before infusion.

Pharmacokinetics
The echinocandins have various common features with
respect to pharmacokinetics (table 2). At present, all
compounds are insufficiently bioavailable for oral use
(<0·2% for caspofungin).33 In a study in volunteers with
AIDS given oral anidulafungin in doses up to 500 mg a
day, peak plasma concentrations of 753 ng/mL were
achieved,32 but this amount was insufficient to give
consistently good results for oropharyngeal candidiasis.

All echinocandins have linear kinetics after intravenous
administration. After use, the Cmax of caspofungin 
(70 mg) and micafungin (75 mg) are similar and 
are considerably higher than that of anidulafungin 
(table 2).32–49 Caspofungin and micafungin have similar
beta half-lives, with limited intervolunteer variation.
These plasma half-lives are determined mainly by
redistribution of drug. The volume of distribution of
anidulafungin is greater than for micafungin (and
unavailable for caspofungin), as is clearance. Steady-state
is achieved for anidulafungin after a loading dose and one
subsequent dose; for micafungin it is obtained after 4
days of treatment, but for caspofungin not for more than 
2 weeks after initiation of the drug. The steady-state area
under the curve of caspofungin and micafungin are
similar, whereas that of anidulafungin is much less, at
nearly equivalent doses.

One of the distinguishing features of the three
echinocandins is their different protein binding (table 2).
High protein-binding could limit the amount of drug

available for activity. However, only a small amount of
micafungin is covalently bound to albumin. Several
antifungal drugs are highly protein-bound, including
amphotericin B and itraconazole, by contrast with the
water-soluble drugs fluconazole and flucytosine.
Additionally, the concentrations in cerebrospinal fluid of
both amphotericin B and itraconazole are low, but these
drugs are effective for fungal meningitis.50 Therefore, the
relevance of drug-protein binding is not yet clear.

Echinocandins are degraded mainly in the liver (also 
in the adrenals and spleen) by hydrolysis and 
N-acetylation.33 After the initial distribution phase,
hepatic uptake—and therefore degradation—is slow (for
caspofungin and micafungin), leading to a long terminal
half-life. Extensive uptake by red-blood cells was noted
for micafungin. Two uncommon metabolites from
micafungin have antifungal activity. These degradation
products are excreted slowly over many days, mainly in
the bile. Results of radiolabel studies suggest that the
liver, renal cortex, and skin contained most residual drug
or metabolite.

There is a slight increase in exposure to caspofungin in
patients in renal failure, not related to renal excretion or
plasma protein-binding.33 None of the compounds can be
dialysed, and so no adjustment is necessary for patients
who need renal replacement treatment. Dosage reduction
(to 50% daily dose after a standard loading dose) is
recommended for patients with severe hepatic dysfunction,
only for those receiving caspofungin,43 although this
recommendation is not backed by clinical data.

A study designed to establish the maximum-tolerated
dose of anidulafungin in man—with a maximum loading
dose of 260 mg followed by 130 mg daily—was unable to
establish this maximum dose (no overt toxic effects).44

Doses as high as 8 mg/kg of micafungin have been
administered to a few haematology patients as part of a
carefully controlled dose-escalation study without
apparent ill-effects, so the maximum tolerated dose of
micafungin has not been established.45,46 No such work
has been done in human beings with caspofungin, but in
monkeys, evidence of hepatic necrosis associated with
raised transaminases was seen at 5 and 8 mg/kg daily, but
not at 2 mg/kg day.33

Virtually no experience has been accrued with
caspofungin and children,33 although data suggest that a
higher dose might be needed compared with adults.51

Micafungin has been extensively assessed in young
children, but not yet premature neonates. The
pharmacokinetics of micafungin in children are similar to
in adults.47 Elderly patients metabolise caspofungin
slightly more slowly than younger adults, but need no
dosage alterations. No ethnic differences in exposure
have been reported with caspofungin or micafungin.
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Caspofungin Micafungin Anidulafungin

Variable
Cmax at 70–75 mg/day (�g/mL)* 12·1 (11·1–13·2) 10·9 (SD 1·5) 3·44
AUC0–24 (steady state) (�g h–1 mL–1) 100·5 (87·9–114·8) 111·3 (SD 14·1) 44·4
Beta t1/2 (h) 10·6 (SD 1·1) 11–17 18·1
Clearance (mL/min) 10–12·5 ~10·5 12·5–19·2
Volume of distribution (L/kg) † 0·26 0·57
t1/2 hepatic impairment (h) NA (prolonged) 14·4 (SD 0·8) 34–42
t1/2 severe renal impairment (h) NA‡ 14·2 (SD 1·5) 33–42
Protein binding 96% 99·8% 84%
Urinary concentration (% of plasma) 1·4% 0·7% <0·1%
Cerebral spinal fluid concentration (% of plasma) ?low ?low <0·1%

Data are mean (SD), median (IQR), range, or percentage. Data derived from multiple sources and trials, therefore are not always directly comparable. NA=not available.
t1/2=half life. *Anidulafungin given as loading dose of 150 mg, followed by 75 mg daily, caspofungin at 70 mg/day. †Data not provided because tissue uptake is
complex and under investigation. ‡Probably similar to volunteers.

Table 2: Key pharmacokinetic variables of the echinocandins in clinical use

Drug Manufacturer Current status

Caspofungin (MK991, Merck Approved
Cancidas)
Micafungin (FK463) Fujisawa Approved
Anidulafungin Vicuron Phase 3 
(LY303366, VER002)
HMR 3270 Indevus Phase 1
Cilofungin Lilly Discontinued

Table 1: Echinocandins in development and their status



anticipated on the basis of the mechanism of action of
the echinocandins. Methods for susceptibility testing of
the echinocandins are not yet developed. Alternative
media, such as antibiotic medium 3 (Becton Dickinson,
Sparks, MD, USA), could be superior for susceptibility
testing of Candida spp because of improved growth and
clearer endpoints. Preliminary studies have shown low
inocula (0·5–2·5�103) to be best, with a 100% endpoint.
In susceptibility testing of Aspergillus spp, some growth
inhibition is seen at low drug concentrations; trace
growth is recorded at all amounts of drug. Different
endpoints have therefore been defined for testing
Aspergillus spp and echinocandins.

Activity against Candida spp
Minimum inhibitory concentrations of all three
echinocandins are much lower than for amphotericin B
and fluconazole against all common Candida spp except
Candida parapsilosis and Candida guilliermondii, for 
which they are similar. Typical values for C albicans
are 0·004–0·015 mg/L.52–61 For C parapsilosis and
C guilliermondii, minimum inhibitory concentrations are
typically 0·5–2·0 mg/L.52–61 Most isolates of Candida spp
are killed at concentrations similar to those that inhibit
growth, but about 10% are tolerant, depending on the
species and drug.56,57 Killing is very rapid, as ascertained
by flow cytometry.59 Furthermore, a postantifungal 
effect is present.60,61 Considerable interisolate variation is
noted in both minimum inhibitory and fungicidal
concentrations to all three echinocandins,57 which if
validated for clinical or in-vivo outcome, could have
important implications for selection of the optimum
agent for treatment. 

In-vivo data broadly accords with in-vitro data. All
models have been done with C albicans (including
fluconazole-resistant isolates),62–69 with the exceptions 
of C glabrata,70,71 Candida krusei (Henkel T, Vicuron,
personal communication),70 and Candida tropicalis.71

Sterilisation of tissues was the norm in these models,
with larger doses and longer durations of treatment
needed in chronically neutropenic animals infected with
C albicans or C tropicalis.63,72 Caspofungin was not
effective in reduction of colony counts in a neutropenic
C glabrata model, and was not very effective in immuno-
compromised C krusei models.70

Some work has explored the effect of caspofungin on
candida biofilm formation and destruction.73,74 While
fluconazole was completely ineffective and antagonised
caspofungin, treatment with caspofungin of established
biofilms resulted in morphological alterations, an effect
enhanced with amphotericin B co-incubation.

Activity against Aspergillus spp
For Aspergillus spp, inhibition of growth is detectable 
at very low concentrations—eg, 0·008 mg/L—of
echinocandin drug in some systems, but inocula, media,
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Drug interactions
Since the echinocandins are poor substrates for the
cytochrome P450 enzymes, and are not substrates for
intestinal or tissue P-glycoprotein, fewer drug
interactions are described for these molecules than for
the azoles. Slight increases in caspofungin clearance have
been seen with powerful inducers or inhibitors of hepatic
metabolism, such as efavirenz, phenytoin, nevirapine,
nelfinavir, carbamazepine, and dexamethasone, so a
slight increase in daily caspofungin dose (70 mg) is
appropriate. A bilateral interaction of caspofungin with
rifampicin has been recorded, probably as a result 
of excretion through the biliary system, which results 
in additional exposure to both compounds
(http://www.aspergillus.man.ac.uk). A slightly reduced
exposure to tacrolimus (20%) was seen with
coadministration of caspofungin,48 and monitoring of
tacrolimus concentrations was recommended.
Caspofungin and ciclosporin do seem to interact,33

resulting in raised caspofungin plasma concentrations
(35% increase in area under the curve) but no change in
amount of ciclosporin in whole blood. The mechanism
of this interaction is unclear, but data in rats suggest 
that ciclosporin limits uptake of caspofungin into the
liver.33 In volunteers, this interaction resulted in raised
liver function tests, but its clinical importance is unclear.
No interactions were noted with other antifungal 
drugs such as itraconazole and amphotericin B,30 and
no interaction was seen between caspofungin and
mycophenolate.33

No drug interactions have been described with
micafungin and other highly protein-bound compounds
including warfarin, diazepam, salicylic acid, and
methotrexate. Micafungin only substantially amplifies
free bilirubin at micafungin concentrations three to 
30 times those in plasma. Two volunteer studies with a
combination of ciclosporin and micafungin showed no
effect on either drug; the same was also seen with
tacrolimus.41

Results of a combination study of anidulafungin 
and ciclosporin in healthy volunteers showed a slight
increase in exposure to anidulafungin.39 Two out of 
12 participants had raised liver function tests that
resolved, and the association between anidulafungin and
ciclosporin dosing in these individuals was not clear.
The mechanism of this interaction is not known because
no effect has been reported of anidulafungin on the
metabolism of ciclosporin by human microsomes.49

Antifungal spectrum
The echinocandin antifungal spectrum is restricted to
Candida spp and Aspergillus spp, with few exceptions
(table 3). All three compounds are fungicidal in vitro
and in vivo against most isolates of Candida spp, and
fungistatic against Aspergillus spp. Cross-resistance with
polyenes and azoles has not been shown and is not
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Highly active Very active Some activity Inactive

Candida albicans Candida parapsilosis Coccidioides immitis Zygomycetes
Candida glabrata Candida gulliermondii Blastomyces dermatididis Cryptococcus neoformans
Candida tropicalis Aspergillus fumigatus Scedosporium spp Fusarium spp
Candida krusei Aspergillus flavus Paecilomyces variotii Trichosporon spp
Candida kefyr Aspergillus terreus Histoplasma capsulatum
Pneumocystis carinii* Candida lusitaniae

Highly active implies very low minimum inhibitory concentrations with fungicidal activity and good in-vivo activity, Very active implies low minimum inhibitory
concentrations, but without fungicidal activity in most instances. Some activity implies detectable activity, which might have therapeutic potential for man (in some
cases in combination with other drugs). Inactive implies no intrinsic activity. There are usually some differences between individual isolates within a species and there
might be significant differences between echinocandins. *Only active against cyst form, and probably only useful for prophylaxis.

Table 3: Range of activity of the echinocandins
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addition of sera to the test, and endpoints have differed,
making comparisons difficult.54,55,75–79 Different species
could be more or less susceptible to echinocandins—eg,
Aspergillus flavus seems to be less susceptible to
anidulafungin.76 Results of studies of the effects of
caspofungin on Aspergillus fumigatus in vitro suggest
patchy killing of hyphae, probably of actively growing
cells that are remodelling their cell walls.80,81 Micafungin
exposure alters the morphology of the cell wall as seen
by electron microscopy; the inner fibrillar layer is lost by
12 h but begins to recover by 24 h, consistent with new
cell-wall formation.82 The outer layer returns to almost
normal by 24 h, and there is complete regrowth of
hyphae. If subcultured from broth to agar after
echinocandin exposure and damage to the cell wall, poor
recovery suggests fungicidal activity.76 However, in
animals, all three compounds are effective in improving
survival in otherwise lethal models of invasive
aspergillosis, but with persistently high counts of
Aspergillus spp in tissue.83–90 Substantially higher tissue
burdens were seen with Aspergillus terreus compared
with A fumigatus.84 These findings accord with all three
echinocandins being fungistatic against Aspergillus spp.

Activity against other fungi
The echinocandins are highly active against P carinii.91–93

Glucan synthase is only expressed in the cyst form of the
fungus,25 and data in animals suggest a good
prophylactic effect of the echinocandins at very low
doses, but modest treatment effect.92 It takes 4 days for
turnover of cysts in rats,91 and so in very ill patients any
treatment effect would probably be insufficient.

The echinocandins have modest activity against several
other organisms (table 3). Caspofungin was effective in
extension of survival in experimental infections with
Coccidioides immitis, and slightly reduced organ burdens in
a dose-dependent manner.94 Despite in-vitro activity,77

a worse result was seen with experimental histoplasmosis,
with only a marginal effect noted.95 Other fungi that 
the echinocandins might be active against include
Scedosporium spp, Alternaria spp, Bipolaris spp,
Cladophialophora bantiana, Phialophora spp, Exophiala spp,
Fonsecaea pedrosoi, Paecilomyces variotii, Acremonium
strictum, and Blastomyces dermatididis.33,55,77 The
echinocandins are not active against Cr neoformans,
Trichosporon spp, Fusarium spp, or any
Zygomycetes.33,55,77,78
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Study design Fungal disease Number of Daily doses (mg) Comparator Response Comments
patients

Caspofungin
Primary, double-blind Oesophageal 128 50 and 70 AmB 0·5 mg/kg 50 mg (85%), 70 mg AmB dose modest, end of
dose comparison103 candidiasis (96%), and AmB treatment combined clinical and

(72%) endoscopic response rates
Primary, double-blind Oropharyngeal 143 35, 50, and 70 AmB 0·5 mg/kg 35 mg (74%), 50 mg AmB dose modest, endoscopic 
dose comparison104 and oesophageal (91%), 70 mg (78%) verification of response

candidiasis and AmB (63%)
Primary, double- Oesophageal 177 50 Fluconazole  85% vs 86% Higher relapse rate with
blind105 candidiasis 200 mg/day caspofungin (28% vs 17%,

p=0·19)
Salvage111 Invasive 90 70 (loading) None 37/83 (45%) High proportion of previous 

aspergillosis then 50 treatment failures
Double-blind109 Invasive 224 70 (loading) AmB 0·6–1·0 83/109 (76%) vs More toxic effects with 

candidiasis then 50 mg/kg 90/115 (78%) amphotericin B, similar species 
responses

Micafungin
Double-blind115 Prophylaxis in 882 50 Fluconazole 80% vs 73·5% Large study with benefit across all 

HSCT 400 mg (p=0·025) populations and subgroups
Primary, dose Oesophageal 119 12·5–100 None 97·2% endoscopic Worse outcome in those with 
comparison106 candidiasis response rates if severe disease

>50 mg/day and 
>10 day therapy

Primary, salvage, and Invasive 142 50–100 None 83% candidaemia, Response rate similar for all 
combination* candidiasis  or 63% invasive species, lower for salvage therapy

candidaemia candidiasis
Primary, open114 Various 70 12·5–150 None Candidaemia (100%), The wide range of dose and 

documented oespophageal heterogeneity of the disorders 
fungal infections candidiasis (71%), makes assessment difficult

IPA (60%), CNPA 
(67%), aspergilloma 
(55%)

Salvage, Invasive 290 50–100 None 37% Most patients also given AmB in 
combination112,113 aspergillosis combination, poor outcome 

population

Anidulafungin
Primary, dose Oesophageal 36 50 (loading) then None Endoscopic response Clinical response rates slightly 
comparison107 candidiasis 25 and 70 (loading) rates 81% higher in the higher dose group

then 50 (50/25) and 85% 
(70/35)

Primary, randomised108 Oesophageal ~600 NA NA NA Very large study
candidiasis

Primary, open, dose Candidaemia 120 100 (loading) then None 88% (200/100), Slightly better response rates
comparison110 or invasive 50, 150 (loading) 89% (150/75), and at upper doses

candidiasis then 75, and 200 81% (100/50) end
(loading) then 100 of treatment 

response rates

AmB=amphotericin B. HSCT=haemopoeitic stem-cell transplantation. NA=not available. IPA=invasive pulmonary aspergillosis; CNPA=chronic necrotising pulmonary
aspergillosis *Reusch M, Fujisawa, personal communication.

Table 4: Pivotal clinical efficacy studies concluded



In these studies, no discernible differences were noted
in response rates between different species of candida
that cause disease, which suggests that the higher
minimum inhibitory concentrations of the echinocandins
to C parapsilosis might not be clinically important. These
data need confirmation in patients with more
challenging candida infection—eg, endocarditis or
persistent infection with neutropenia. Details of
response in so-called sanctuary sites such as the eye,
vegetations, urine, mediastinum, and meninges have not
yet become available. The broad candida spectrum,
rapid killing, and good clinical results imply that the
echinocandins will become the treatment of choice for
invasive candidiasis and candidaemia.

Merck did a study in support of the registration of
caspofungin.111 Patients with invasive aspergillosis who
had usually failed treatment with amphotericin B, lipid-
based amphotericin B, or itraconazole, or who in a few
cases were intolerant to amphotericin B, were treated
with caspofungin alone (table 4). A good result (45%
response rate) was obtained, showing that caspofungin is
active in invasive aspergillosis.111 Better results were seen
in patients who were intolerant to amphotericin B than
in those who failed treatment, as might be expected, and
this small group of patients had a response rate of 75%.
Since amphotericin B and itraconazole both have long
half-lives, the response could effectively be a short
period of combination therapy, with continued good
effect of caspofungin. The other point to make about
these studies is that many patients with invasive
aspergillosis die very rapidly, and such patients are
almost never enrolled into these trials because they do
not survive long enough to be enrolled, or are excluded.
Such studies therefore overestimate response rates
compared with the general population of patients with
the disease. The other point of note in the study was 
that response rates of patients with persistent 
profound neutropenia were not as good (<20%). This
suboptimum response rate during persistent neutropenia
accords with amphotericin B responses, although there
are examples in published work of patients with
longlasting neutropenia responding to itraconazole or
voriconazole.120,121

A large study of micafungin in invasive aspergillosis
has also been done (283 patients),112,113 and a study 
of about 50 patients with various forms of aspergillosis
in Japan.114 In most patients, micafungin was added to

existing treatment if the patient was not responding.
Micafungin doses varied from 50 to 300 mg daily, 
and the investigator could increase the dose if the
response was not thought to be adequate. Independent
review of cases to establish diagnostic certainty 
and outcome, and inclusion of only those with
confirmed invasive aspergillosis and at least 7 days 
of micafungin treatment, left 179 cases for analysis of
response. The overall response rate was 37%, with a
40% response rate in the 35 patients treated with
micafungin alone.113

Thus, the role of the echinocandins in the treatment 
of invasive aspergillosis is presently difficult to define.
Good efficacy rates have been seen, and therefore they
certainly represent an alternative for treatment when
drug toxic effects are a problem or patients are failing
therapy. Whether they will be superior to voriconazole 
as first-line therapy122 is uncertain, and there are
indications that they may be less effective in patients
with neutropenia.

Fujisawa did a large prophylaxis study in support of
their registration of micafungin.115 In total, 882 patients
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Combination studies
Many investigators have looked at combinations of
antifungal drugs in the laboratory and in animals with
infection.96–102 For very ill patients, or those with disease that
cannot be eradicated, combinations of drugs are attractive,
as long as antagonism is not noted. Fortunately, antagonism
has not been recorded with any echinocandin-azole or
echinocandin-amphotericin B combination in vitro or in
vivo. Results of most studies suggest only modest additive
effect, with synergy occasionally seen, with both Candida
and Aspergillus spp.

Clinical studies
Clinical development of the echinocandins has explored
indications appropriate for an intravenous drug,
including oesophageal candidiasis, invasive candidiasis
and candidaemia, invasive aspergillosis, and prophylaxis
of invasive fungal infection. The first clinical trials 
that were completed compared amphotericin with 
three different doses of caspofungin in the treatment 
of oesophageal candidiasis in patients with AIDS 
(table 4).103,104 Caspofungin 35 mg daily is inferior to 
50 mg and 70 mg daily, and both these doses were
superior to a subtherapeutic dose of amphotericin B 
(0·5 mg/kg), although confidence intervals were
wide.103,104 Major endoscopic improvement was needed
for a response. Caspofungin 50 mg daily was equivalent
to fluconazole 200 mg daily.105 Results of a phase 2 dose-
comparison study with micafungin (25–100 mg daily) in
120 patients with oesophageal candidiasis showed the
best clinical response rates with doses of 25 mg or more
daily, and better endoscopic response rates in those
receiving 75 mg or more daily.106 Overall response rates
were similar to those seen with fluconazole.116 Good
results were also seen with two doses of anidulafungin 
in endoscopically-proven oesophageal candidiasis.107

A randomised trial of anidulafungin and fluconazole in
600 patients with oesophageal candidiasis has completed
enrolment.108 In those who failed fluconazole because of
resistance, good response rates were seen with
caspofungin.117 Results of these studies clearly show the
efficacy of the echinocandins in the treatment of a
serious mucosal fungal infection. 

In a randomised study of primary treatment of
invasive candidiasis and candidaemia, treatment with
caspofungin was equivalent to amphotericin B.109 The
caspofungin dose used was the standard loading dose 
of 70 mg followed by 50 mg a day, and this regimen 
was compared with amphotericin B (0·6–1 mg/kg).
Response rates in both arms were 76–78%,109 which
compare favourably with previous data for fluconazole
and amphotericin B.118,119 Caspofungin was less toxic
than amphotericin B, and was effective for all species. 
A large open study of micafungin for the same
indication (but mostly in patients intolerant of or failing
other treatment) has been concluded (Reusch M,
Fujisawa, personal communication). To date, 173
patients were enrolled, 119 with candidaemia and 54
with invasive candidiasis. Some received primary
treatment with micafungin, others salvage therapy, and
others a combination with other drugs, usually lipid-
associated amphotericin B. All outcomes were
determined by an external expert. The overall response
rate was 83% in patients with candidaemia and 63% in
those with invasive candidiasis (Reusch M, Fujisawa,
personal communication). A phase 2 dose-comparison
study of anidulafungin has completed enrolment of 120
patients with response rates of 81–89%, with very few
adverse events.110
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who received a haemopoietic stem-cell transplant were
randomly allocated micafungin 50 mg/day or fluconazole
400 mg/day, for up to 6 weeks. Breakthrough infections,
including those that arose up to 30 days after
prophylaxis, were assessed. Endpoints included
suspected fungal infection, and the treatment for this
infection was amphotericin B. Micafungin response rates
were better than those for fluconazole (80% vs 73·5%;
p=0·025) and benefit was seen across all patient-groups,
including children and elderly people, allogeneic and
autologous transplant recipients, and patients with
persistent neutropenia. Thus, despite the low dose of
micafungin used, its benefit was clearly shown. The rate
of documented aspergillosis was low. Whether the
mortality benefits that have been seen with fluconazole123

in this setting will be seen with micafungin in the future
remains to be seen. 

Combination therapy is an attractive option for
patients with predictably poor clinical responses to
present antifungal agents. This topic has been
comprehensively reviewed for aspergillosis, the main
focus of interest with respect to the echinocandins.124

Antagonism has not been shown in vitro or in vivo,
which is important. One retrospective assessment of 
the addition of caspofungin to amphotericin B in
patients with cancer with invasive aspergillosis was
encouraging,125 as was the combination of itraconazole
and caspofungin in two patients.126 The response rates in
patients on combination treatment were worse than for
those on monotherapy with micafungin.113 This finding
probably indicates the actual or anticipated condition of
the patient, and shows the need for studies to assess
whether combination therapy is indeed advantageous.
Combination treatment might be appropriate for very ill
patients with predictably poor outcomes.

Adverse events and toxic effects
The adverse events and toxic effects of the
echinocandins have been few. The maximum tolerated
dose of caspofungin in rats was less than 38 mg/kg;33 this
value is not available for micafungin or anidulafungin. 

Class-related toxic effects are shown in the panel.
Histamine release is a frequent biological effect for basic
polypeptide compounds. In animals treated with
moderate and high doses of echinocandins given as 
an intravenous bolus, some evidence of histamine release
was seen. For caspofungin, the no-observed-effect
concentration with respect to histamine-like reactions
was 2 mg/kg in rats and 8 mg/kg in monkeys with 
the clinical formulation.33 For micafungin, this
concentration was 10 mg/kg in rats, but infusion
duration is a major determinant of this reaction and was
not standardised in different laboratories. In patients,
histamine-like reactions (not necessarily caused by
histamine release) were not seen with any frequency
after administration of caspofungin or micafungin, but
could arise after anidulafungin if given too fast.

Local irritation at the infusion site is a problem for all
compounds in preclinical studies. This sign has been
noted in patients receiving caspofungin (about 20%
incidence) but not micafungin. Liver toxic effects were
manifest in several ways after administration of
echinocandins. Doses of caspofungin of more than 
2 mg/kg in monkeys caused rises in amount of 
alanine aminotransferase,33 with a no-observed-effect
concentration of 1·5 mg/kg. Larger doses (5 and 8 mg/kg
daily) of caspofungin in monkeys led to patchy hepatic
necrosis. Abnormal liver-function tests in patients
receiving caspofungin were frequent, but not always
associated with treatment, because the patients typically
had other reasons for these abnormalities.33,109 A high
frequency of abnormal liver-function tests was seen with
concurrent ciclosporin administration in early studies,33

which increases exposure to caspofungin, suggesting that
the therapeutic margin is small, although the clinical
significance of this finding is unclear. Likewise, patients
with micafungin also had abnormal liver-function tests
(with a lower frequency than with caspofungin), but the
relation to micafungin therapy was unclear in most
instances.112

Haemolysis was seen in vitro and in some animals treated
with echinocandins. Clinically significant haemolytic
anaemia seems to be rare in clinical studies. Fever is a
frequent side-effect of caspofungin treatment (arises in
about 35% of patients).33,103–105 Fever is uncommon with
micafungin (about 1%).112,119 Rash is an infrequent problem
(<5%)—aside from flushing associated with a histamine-
like reaction—with all three compounds. The combination
of itraconazole and caspofungin might be more likely to
lead to rash.33 Headache is a frequent side-effect with all
three compounds (3% with micafungin, about 15% with
caspofungin).

Thus the toxic-effects profile of the three
echinocandins is favourable, and certainly less of a
problem than for amphotericin B, whether in complex
with lipid or not. Caspofungin might have a narrower
therapeutic window with respect to liver-function tests
and concurrent use with ciclosporin than micafungin
and possibly anidulafungin. Since the pharmacokinetics
are predictable in different populations, unexpected
dose-related toxic effects are unlikely. Idiosyncratic toxic
events have yet to be described, and hopefully will not
emerge, but vigilance is called for in view of the fact that
this is a new class of chemistry now in human use.
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