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A novel antifungal strategy targeting the inhibition of calcineurin is described. To develop a calcineurin
based inhibitor of pathogenic fungi, analogs of FK506 were synthesized that were able to permeate mam-
malian but not fungal cells. Antagonists in combination with FK506 were not immunosuppressive and
retained antifungal activity in A. fumigatus. To reduce the dosage burden of the antagonist, murine oral
PK was improved an order of magnitude relative to previous FK506 antagonists.

© 2017 Elsevier Ltd. All rights reserved.

Treatment options for systemic fungal infections are limited,
with mortality rates for systemic aspergillosis reported to be over
50%.! To improve treatment and circumvent resistance, new anti-
fungal therapies with novel mechanisms of action are needed. Cal-
cineurin (CN), a calcium signaling protein is a Ca* sensitive serine/
threonine protein phosphatase. It is a heterodimeric protein con-
sisting of a catalytic subunit, calcineurin A, and a Ca(2+)-binding
regulatory subunit, calcineurin B. Calcineurin is essential for
growth of Cryptococcus neoformans and important for virulence
and pathogenicity in Aspergillus fumigatus, two important patho-
genic fungi.? FK506 is a natural product that inhibits calcineurin
signaling. It inhibits the growth of C. neoformans and A. fumigatus
with MIC values of 0.01 and 0.025 pg/mL respectively.> FK506
inhibits calcineurin activity by a unique, small molecule-mediated,
protein-protein interaction.” FK506 binds to FKBP12, and this bin-
ary complex binds to calcineurin and inhibits its phosphatase
activity and downstream signaling.

FK506 is not effective as an antifungal therapy for systemic fun-
gal infections because FK506, clinically known as Tacrolimus, is a
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potent immunosuppressant. An intact immune system is believed
to be an essential component for clearing systemic fungal infec-
tions.> Tacrolimus is an essential clinical drug used to dampen
the immune response for organ transplant patients.® A conse-
quence of the inhibition of calcineurin is the abrogation of both
the innate and adaptive human immune response via the inhibi-
tion of NFATsignaling.”®

This study explores the utility of dosing a second molecule with
FK506 that reverses or antagonizes the immunosuppressive effects
of FK506 in human immune cells, but does not substantially lower
the antifungal properties of FK506. In untreated cells, FKBP12 does
not bind to calcineurin, and calcineurin is able to dephosphorylate
the transcription factors, pNFAT (mammalian)®® or pCrzl
(fungal),’® leading to a normal immune response or to normal
fungal growth respectively (Fig. 1A). In cells treated with FK506,
a binary complex of FK506 and FKBP12, binds to calcineurin and
inhibits its phosphatase activity (Fig. 1B). Inhibition of
calcineurin’s phosphatase activity results in immunosuppression
(mammalian cells) and antifungal activity. In the presence of
both FK506 and excess FK506 antagonist, the antagonist binds to
human FKBP12 excluding the binding of FK506 and thus
preventing its subsequent binding to calcineurin and inhibition
of calcineurin activity (Fig. 1C).

Both human and fungal cells are permeable to FK506. The
antagonists will be designed to be cell-permeable to mammalian
cells but not to fungal cells, Fig. 2. This dichotomy will result in a
functional immune system and antifungal activity when FK506
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Fig. 1. A) FKBP12 does not interact with calcineurin. Calcineurin dephosphorylates pNFAT or pCrz1. B) FK506 binds to FKBP12, this binary complex then binds to calcineurin
and blocks dephosphorylation of pNFAT (mammalian) or pCrz1 (fungal) leading to immunosuppression and antifungal phenotype in respective cell types. C) Addition of
antagonists block FK506 from binding to FKBP12 in mammalian cells resulting in removal of immunosuppression.
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Fig. 2. Human and fungal cells are permeable to FK506. Human cells are permeable to antagonist. Fungal cells are not permeable to antagonist.

and antagonists are dosed in combination. Previous studies in our
lab suggested that select FK506 analogs were less able to penetrate
fungal cells compared to mammalian cells.

This study was inspired by the early work at Merck characteriz-
ing FK506 antagonists such as their C18 hydroxy FK506 antagonist
compound, L-685,818, which binds to FKBP12 but does not inhibit
calcineurin and is non-immunosuppressive, Fig. 3.%° In vitro dos-
ing of a 1000-fold excess of L-685, 818 with respect to FK506
reverses the immunosuppression caused by FK506 alone in mouse
splenocytes.'® An in vivo study showed that only a 10-fold excess
of L-685,818 to FK506 completely reversed the depletion of mouse
CD4 + 8— bearing thymocytes as observed with FK506 alone.’

Our studies confirmed the immunosuppressive antagonism of
1-685,818 (2); however, it antagonized the antifungal effects of
FK506 (Table 1) and possessed poor pharmacokinetic (PK) proper-
ties (Table 2). This work details the discovery of an antifungal
FK506-antagonist that potently antagonizes FK506, has better
cell-permeability in human cells vs. fungal cells, and shows
improved PK properties compared to L-685,818 and FK506. We
note that high FKBP12 binding potency and good PK are necessary
to reduce the required dosing ratio of antagonist/FK506 to achieve

Fig. 3. FK506, L-685,818 (2) (OH at C18).

the effects of low immunosuppression while maintaining antifun-
gal activity.

FK506 was chosen as the scaffold for the antagonist because it is
an extremely potent binder of FKBP12. From X-ray structural anal-
ysis of the Bos taurus FK506/FKBP12/Calcineurin complex (1TCO),
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3(standard deviation), ® binding to human FKBP12, € binding to A. fumigatus FKBP12, %calcineurin activity, antagonists were co-incubated with FK506 (250 nM), FKBP12,
calcineurin, calmodulin and phosphatase substrate, °IL-2 levels in stimulated Jurkat cells, f100-fold [antagonist] co-incubated with 10 nM FK506 with PBMCs, 100-fold
[antagonist] co-incubated with 125 ng/ml FK506 with A. fumigatus, "only single measurement.

ID R* R32 R'®  FKBP12 FKBP12 Asp® CN competition I.2¢ Competition% Competition%
human® ICso ICso nM human? ICso nM ICso proliferation PBMC’  proliferation A.
nM 1M fumigatus®

1 Alyl OH H  14.05(1.13* 1845 (1.14) NA 0.36 NA NA

(0.06)
2 Ethyl OH OH 6.80(1.22) 1848 (1.15) 1314 (1.16) >10 78.7 (3.1) 86.8 (4.4)
3 o o OH H  11.48(1.18) 824 (1.27) >10 45.9 (6.3) 39.7 (2.2)
/\)LN/\/N
H
4 0 Q@ OH H  1430(1.14) 849.8 (1.45) >10 36.6 (2.0) 31.0 (2.0)
/\)L” N
5 o OH H  1339(1.12) 22,52 (1.14) 988.6 (1.18) >10 36.2 (6.9) 35.7"
/\)J\N/\/OH
L_oH

6 0 — OH H  952(1.18) 12.76 (1.14) 1077 (1.22) >10 493 (1.2) 49.6 (12.3)

et

7 0 OH H 1261 (1.15) 16.81 (1.13) 1098 (1.17) >10 102.8 (8.1) 43.1 (5.4)

N N—
)N :

8 o W e o~ OH  H 191 (1.12) >10 67.8 (5.7) 42.0

9 o) OH OH H  12.48(1.16) 1111 (1.23) >10 499 (5.2) 24.0(1.3)

/\)]\N/j
10 /\)OL OH H  11.19(1.15) 1291 (1.09) >10 88.3 (5.2) 47.4(13.1)
N N7
(UN g
11 Ethyl o»_/—\ H 1099 (1.16) 1735 (1.09) >10 79.8 (5.1) 68.0"
N N—
o
12 o) OH H 1259(1.14) 1808 (1.38) >10 27.5 (6.3) 36.5"
/\/\)LN/\
LUNH
13 S NoH OH H  27.00(1.17) >10 96.5 (4.7) 37.5"
14 O OH H 22.10(1.14) >10 90.5"
0
15 )?\ j}l\ H  22.60(1.14) >10 63.0 (7.1) 22.0P
S\
16 / OH H  19.20(1.14) >10 105.6 (12.5) 54.3 (20.0)
N
/N
17 /\)OL OH H 11.19(1.15) >10 883 (5.2) 47.4h
Ny N7
‘\/N \l
h
18 o) o~ OH H 23.60 (1.14) >10 81.7 (3.3) 24.0

and SAR work, vectors off C21 or C32 were expected to have little
effect on FKBP12 binding. In addition, polar and larger substituents
off C21 were expected to prevent binding of calcineurin. Substitu-
tions off C32 were designed to block the known metabolic
demethylation pathway'? of the C31 methoxy group and to pro-

vide an additional handle for modifying physical and PK properties.
Over one hundred analogs were synthesized with variations at

these two sites.

Throughout our studies it was observed that small impurities of
active calcineurin binding ligands such as FK506 or specific FK506
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Table 2
Mouse PK data.

ID IV-3mpk-CL-[L/  IV-3mpk-V_ss- IV-3mpk- IV-3mpk-AUC_last- Oral-10mpk- Oral-10mpk-Cmax- Oral-10mpk-AUC_last-
h/kg] [L/kg] Terminal_t1/2-[h] [h*ng/mL] Tmax-[h] [ng/mL] [h*ng/mL]

1 1.77 1.8 0.952 1617

2 365 2.58 1.11 787 0.25 184 208

13 137 1.17 0.793 2114 0.5 1643 2709

14 137 1.01 0.714 2141

15 0.964 1.35 1.36 2781 0.5 814 1858

analogs off C32 or C21 would adversely affect the interpretation of
the antagonists’ properties. For this reason only compounds that
contained less than 0.1% calcineurin active impurities were tested.
Any impurities present at this level would not affect the interpre-
tation of the IL-2 assay’s top concentration of 10 pM. Purity was
assessed by LCMS set to the specific masses of the compounds of
interest. Many compounds were not assayed because of the inabil-
ity to meet this criterion of purity. For example, the polar C21
acrylic acid derivative of FK506 was unable to be suitably purified
away from the much less polar FK506 after exhaustive chromatog-
raphy and solid phase trapping efforts.

FK506 was modified at one or more accessible sites. The synthe-
ses of the analogs are described in Figs. 4-7. Selective hydrogena-
tion of the FK506 C21 butenoic acid'® analogs with Pd/C followed
by HATU mediated amide bond formation'“ resulted in substituted
butyramides (Fig. 4). The FK506 C21-acetamides were synthesized
from the Pinnick oxidation of the corresponding aldehydes® fol-
lowed by HATU mediated amide bond formation'* (Fig. 5). Radical
initiated photoreaction of the C21 allyl group with thiols (thiol-ene
reaction) is a mild and selective method to generate substituted
mercaptans in good yield'” (Fig. 6). Reductive amination'® of the
bis-TBS-protected aldehydes® led to tertiary amines (Fig. 7). The
C32 carbamate (11, 15) and the hydroxyethyl ether (8, 18) combi-
nation analogs were made via the nitrophenylcarbamate interme-
diates'” and from the TBS-oxyethyl triflate'® respectively followed
by substitution at C21. Selenium dioxide mediated hydroxylation'”
at C18 followed by carbamate formation led to the C18-hydroxy-
C21-carbamate combinations.

A fluorescence polarization assay was implemented to deter-
mine binding of the antagonists to FKBP12 as previously
described.?° FK506 was determined to bind to human FKBP12 with
an ICs5g of 14 nM. The C21 vector of FK506 does not contact FKBP12,

Fig. 6. Mercaptans: reagents and conditions: (a) RSH, 2-dimethoxy-2-phenylace-
tophenone, light, 50-80%.

Fig. 7. Tertiary amines: reagents and conditions: (a) R,NH, NaBH(OAc)s; (b) 48%
HF/ACN, 23%.

and substitution off that vector is anticipated to have a negligible
effect on binding to FKBP12. As predicted, all the FK506 analogs
with polar substituents off the C21 position bound tightly to
FKBP12 with similar binding constants to FK506, ranging from 9
to 14 nM. A subset of compounds was tested for binding to A. fumi-
gatus FKBP12. FK506 bound to A. fumigatus FKBP12 with an ICsq of
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Fig. 8. Antagonism of the anti-proliferative effects of FK506 with compounds 2 and 8 on PBMCs: FK506 (0.01 uM) dosed with increasing levels of antagonist, 2 and 8, (10x

and 100x) with respect to proliferation of PBMCs.
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Fig. 9. Antagonism of the antifungal effect of FK506 with compound 2 and 8 on A. fumigatus: FK506 (0.125 pg/mL) dosed with increasing levels of antagonist with respect to

proliferation of A. fumigatus.

19 nM. The antagonists all showed similar A. fumigatus binding
constants relative to FK506 reinforcing that the C21 vector does
not make contact with human or fungal FKBP12.

In addition, a biochemical competition assay was designed to
assess the ability of an antagonist to compete with FK506 with
respect to calcineurin phosphatase activity. The calcineurin (CN)
inhibition assay was adapted from the R&D systems website proto-
col.?! FK506 inhibits the phosphatase activity of calcineurin by
binding to human FKBP12 and subsequently to the calcineurin/-
calmodulin complex with an ICso of 125 nM. The compounds
antagonized FK506 binding with a range of ICsy values from 800
to 1800 nM (CN competition human ICsq nM, Table 1). The antag-
onists tested alone did not measurably inhibit phosphatase
activity.

It is interesting that the antagonists’ competition ICso values
were higher than the ICsq value of FK506 (125 nM) despite FKBP12
binding constants that were similar to FK506 (FKBP12 human ICsq
nM, Table 1). The discrepancy may be attributed to the conforma-
tional differences between the FK506/FKBP12/CN/calmodulin and
FK506/FKBP12 complexes with respect to FK506 and antagonist
binding.

[IL-2 secretion is dependent on calcineurin phosphatase activity
and is a biomarker for an active immune system. To validate that
the antagonists alone were non-immunosuppressive, the antago-
nists were evaluated in an IL-2 secretion assay in stimulated Jurkat
cells according to established methods.?? FK506 inhibited IL-2
secretion at 0.36 pM. The IL-2 assay ICsq values for all the antago-
nists were greater than 10 pM (Table 1), and were therefore non-
immunosuppressive.

Initial efforts employing an LCMS method to directly assay for
cell permeability were not successful due to poor mass recovery.
Instead a cellular assay was developed in which Concanavalin A
stimulated Peripheral Blood Mononuclear Cells,>> PBMCs, were
dosed with 10 nM of FK506 and an ascending dose of antagonist.
FK506 alone inhibited PMBC proliferation, and antagonists that
were able to permeate PMBCs reversed the FK506 inhibition of

proliferation. Under cell free conditions, the compounds were
shown to reverse the FK506 inhibition of calcineurin phosphatase
activity in the CN competition assay, Table 1. The antagonists
tested alone at 1-2 pg/mL showed no inhibition of proliferation.

Compounds when dosed at 100-fold excess of FK506 antago-
nized the anti-proliferative effects of FK506, and the data is shown
in Figs. 8 and 9. Both the Merck compound L-685,818 (2), and com-
pound 8 showed antagonism of FK506 at the 100x ratio, but little
antagonism at 10x ratio (Fig. 8). Compounds 16 and 7 penetrated
mammalian cells, and at 100-fold excess completely reversed the
anti-proliferative effects of FK506. Fifteen additional compounds
showed greater than 80% antagonism. A subset of these is repre-
sented by compounds 10, 13 and 17, which were all FK506 antag-
onists at the 80-90% level at 100-fold excess. It was unanticipated
that mammalian cells were permeable to only a small subset of the
antagonists. FK506 is a large macrocyclic natural product and is, by
definition, an exception to Lipinski’s rules.?* Since natural products
have been evolutionarily selected to permeate their target species,
any changes to the structure or physical properties may result in
poor penetration of the cell membrane.

To determine the ability of the antagonists to enter fungal cells,
a similar competition assay was developed using A. fumigatus
growth as an endpoint (Table 1, Fig. 9, competition% proliferation
A. fumigatus). Briefly, A. fumigatus spores were prepared and plated
as per CLSI methods?® with some modifications. Spores were trea-
ted with FK506 together with increasing concentrations of antago-
nist. FK506 alone inhibited fungal growth of A. fumigatus with a
MEC value of 0.1 pg/mL. For the competition study FK506 was
dosed at 0.125 pg/mL in combination with 100-fold excess of
antagonist.

The Merck antagonist, 2, when dosed 50-200-fold over and in
combination with FK506 (0.125 pg/mL) did not inhibit A. fumigatus
proliferation, Fig. 9. The fungi grew up to 83% of the untreated con-
trols at 100x, and thereby L-685,818 was likely permeable to the
fungal cells and antagonistic to the antifungal effects of FK506. In
contrast, under similar combination conditions compound 8
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Fig. 10. Competition% Proliferation of Aspergillus vs. Human PBMC?° Diagonal line
represents Competition% Proliferation PBMC values equal to Competition% Prolif-
eration A. fumigatus.

showed inhibition of A. fumigatus at all concentrations. The best
compounds, 15 and 18, in combination with FK506 inhibited A.
fumigatus proliferation to 22 and 24% of the untreated controls,
suggesting these compounds were relatively impermeable to fun-
gal cells and allowed FK506 to freely inhibit calcineurin. Antago-
nists alone up to 25 pg/mL showed no appreciable antifungal
activity.

A plot of the competition% proliferation Aspergillus vs. PBMC
data (Fig. 10) represents a comparison of the antagonists proper-
ties with respect to cell-permeability in fungal and human immune
cells. The plot shows that the antagonists are generally more cell-
permeable to PBMCs vs. fungal cells as more compounds lie above
the diagonal. The better compounds occupy the top leftmost quad-
rant of Fig. 10. Compounds 15 and 18 show the lowest levels of
fungal permeability but are near 75% with respect to PBMC perme-
ability. Alternatively, 7 and 13 have slightly higher fungal perme-
ability values but show maximal PBMC permeability of 100%. It
is yet undetermined which characteristics would lead to a more
efficacious response with respect to an in vivo fungal infection
model.

FK506 binds to FKBP12 and inhibits its peptidyl proline iso-
merase activity (PPlase). Previous studies have suggested that
inhibiting this activity has few adverse effects because other
related PPlases can compensate.’’ In this study, the dosing level
of antagonist will be high enough to effectively inhibit the PPlase
activity of FKBP12 and its isoforms. To build confidence in the
validity of this strategy the antagonists were studied for cytotoxic
effects on Vero76 and HepG2 cells.?® All compounds tested showed
an ICsq greater than 100 M, and therefore were determined to be
relatively non-toxic at the dosing levels of the antagonists used in
these experiments.

Optimizing for PK proved challenging since attempts to filter
potential compounds for animal PK studies by in vitro microsomal
stability studies were unsuccessful. Poor correlation was observed
between the in vitro and in vivo clearance data. Moreover, in vitro
Caco-2 studies to model gut absorption were unsuccessful due to
poor mass recovery. Despite these shortcomings, select com-
pounds did show improved PK properties with respect to the
model compound 2 (L-685,818) (Table 2). Compound 13 exhibited
an oral AUC value thirteen times larger than of compound 2. This
greater AUC will allow lower dosing levels of the antagonists vs.
FK506 in animal models of invasive aspergillosis, thereby improv-
ing the tractability of the experiment.

Inhibition of calcineurin has been established as a potential
antifungal target, but efforts to exploit its antifungal properties
have always failed due to its associated human immunosuppres-
sive effects. In this paper we demonstrated a strategy to circum-

vent the immunosuppressive effects. Compounds were identified
which bound FKBP12 as tightly as FK506 or better. Specifically all
FK506 analogs with polar groups off C21 exhibited these proper-
ties. These same compounds lacked significant binding to cal-
cineurin and did not show any in vitro immunosuppression. A
subset of these compounds reversed the in vitro immunosuppres-
sive effects of FK506 when dosed in 100-fold excess. A subset of
these compounds was additionally identified that did not reverse
the antifungal effects of FK506 when dosed in 100-fold excess. In
mice, two compounds, (13 and 15), exhibited a thirteen and nine-
fold better oral AUC value than the prototype compound L-685,818
respectively. All of the compounds tested exhibited IV AUC values
from 2.7 to 3.5 times that of L-685,818. In conclusion, the combina-
tion of identified antagonists used in conjunction with FK506 has
shown promise as a novel non-immunosuppressive antifungal
therapy. Future proof of principle studies in a mouse aspergillosis
infection model are needed.
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