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A B S T R A C T

Currently, the numbers of patients with cancer, fibrosis, diabetes, chronic kidney disease, stroke and osteo-
porosis are increasing fast and fast. It’s critical necessary to discovery lead compounds for new drug develop-
ment. Dioscin, one active compound in some medicinal plants, has anti-inflammation, immunoregulation, hy-
polipidemic, anti-viral, anti-fungal and anti-allergic effects. In recent years, dioscin has reached more and more
attention with its potent effects to treat liver, kidney, brain, stomach and intestine damages, and metabolic
diseases including diabetes, osteoporosis, obesity, hyperuricemia as well as its anti-cancer activities through
adjusting multiple targets and multiple signals. Therefore, dioscin is a promising multi-target candidate to treat
various diseases. This review paper summarized the progress on pharmacological activities and mechanisms of
dioscin, which may provide useful data for development and exploration of this natural product in the further.

1. Introduction

In recent years, the numbers of patients with cancers, fibrosis, liver
injury, cirrhosis, diabetes, chronic kidney disease, and osteoporosis are
increasing (Table 1) [1]. Thus, development and exploration of new
treatment modalities to reduce the burden and control the diseases are
critical important.

Evidences have shown that drugs or functional products with single
target have less treatment actions and more side effects when they are
used to treat complex diseases involving multiple pathological changes
[2,3]. In response to these challenges, there are growing interests to
develop multi-target drugs or functional products. Traditional Chinese
medicines (TCMs) have been used to treat various diseases in China for
thousands of years [4,5]. In the past decades, the works of TCMs on
multiple-target effects have significantly increased. Beyond that, TCMs
process some positive features including diversity, broad continuity,
relatively low cost, low side effects and high efficiency [6]. A large
number of pharmacological researches on active natural products de-
rived from TCMs have achieved tremendous progress in recent years
(Fig. 1A). The works of artemisinin against malaria by Youyou Tu have
won the “2015 Nobel Prize in Hysiology or Medicine”. Therefore, it’s
feasible to discovery natural products from TCMs for development and
exploration of innovative drugs.

Dioscin, a steroidal saponin, is an active ingredient in some TCMs
including Liuwei Dihuang decoction and Di’ao Xinxue kang [7–10]. The

data from “PubMed” and “CNKI” databases have indicated that the
works on dioscin have markedly increased in recent years (Fig. 1B). As
shown in Fig. 2, dioscin also is one active compound in Dioscoreae
rhizoma (Shanyao in Chinese, one famous vegetable), and several
Dioscoreaceae plants including Dioscorea Zingiberensis C.H. Wright and
Dioscorea nipponica Makino [11,12]. The book of “Sheng Nong's Herbal
Classic” has recorded that “Dioscorea is sweet to level the smell with the
characteristics of reducing visceral injury and reinforcing in-
sufficiency”, which can also remove cold- and heat-evil, replenish Qi
and promote muscle growth. In addition, Dioscorea can increase the
sensitivity of hearing and vision, and extend life expectancy [13].
Pharmacological tests have shown that dioscin has anti-tumor, anti-
inflammation, immuneregulation, hypolipidemic, anti-viral, anti-fungal
and anti-allergic effects. Furthermore, some works in recent years have
suggested that dioscin can protect liver, kidney, brain and gastro-
intestinal damages, and regulate the metabolic diseases including dia-
betes, osteoporosis, obesity and hyperuricemia through adjusting mul-
tiple targets and signals. Therefore, dioscin is a promising multi-target
candidate to treat some diseases, suggesting that this natural product
should have expansive application prospects.

Although these works have confirmed the pharmacological actions
of dioscin, most of them focus on the effects in one disease or one
mechanism. Therefore, we are trying to give a timely and comprehen-
sive update on the pharmacological actions and targets of dioscin.
References on this natural product have implemented by collecting
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English literatures (PubMed, Elsevier ScienceDirect, Web of Science and
Medline databases). The purpose of the review paper was to investigate
and summarize the latest advances of pharmacological activities and
functional mechanisms of dioscin, and then provide useful data for
development and exploration of this natural product in the further.

2. Mechanisms and anti-tumor effects of dioscin

At present, cancer caused by a lot of factors is expected to exceed
cardiovascular diseases to be the most important cause of mortality in

next few years [14,15]. Although some chemical drugs are effective to
treat cancer, a large number of serious side effects have found. There-
fore, development of new candidates with high efficiency and low side
effects is urgent.

2.1. Anti-breast cancer effect and mechanism of dioscin

Breast cancer is the most common cancer in worldwide with an
estimated 1.7 million cases and 521,900 deaths in 2012. The survival
rates of the breast cancer are currently estimated to be less than 5–10%
for 10-year and 25% for 5-year [16]. In breast cancer, GATA-binding
protein 3 (GATA3) has the ability to reverse epithelial mesenchymal
transition in invasive breast cancer cells, which can result in inhibiting
metastasis. Aumsuwan, P. et al., have found that dioscin can inhibit
cellular invasion in human MDA-MB-231 breast cancer cells by up-
regulating the expression of GATA3 [17]. In addition, microarray asays
have shown that dioscin can up-regulate 36 genes and down-regulate
60 genes in MDA-MB-231 cells, as well as up-regulate 395 genes and
down-regulate 406 genes in MCF-7 cells [18]. These data suggest the
multiple networks and pathways associated with the anti-cancer effects
of dioscin. After the appearance of apoptosis in breast cancer cells,
apoptosis-inducing factor (AIF) translocates to the nucleus and parti-
cipates in caspase-independent apoptotic events including chromatin
condensation and large-scale DNA fragment. Dioscin can induce the
death of MDA-MB-453, MDA-MB-231 and T47D cells via activating AIF-
facilitating caspase-independent pathway and reducing the espression
levels of anti-apoptotic related proteins [19]. In clinical, resistance to
chemotherapeutic agents, especially to multi-drug resistance (MDR), is
a major cause of treatment failure [20]. Importantly, regulating MDR1
level can up-regulate p-glycoprotein (p-gp) expression and suppress
autophagy in cancer cells [21,22]. Dioscin can increase adriamycin
(ADR) chemosen- sitivity by decreasing MDR1 levels, and improve the
cytotoxicity of ADR through inducing autophagy [23].

2.2. Anti-gastric carcinoma effect and mechanism of dioscin

Owing to the high mortality and low survival rate, gastric cancer
has become the second leading cause of cancer-related deaths [24]. Hu,
M.M. et al., have investigated that dioscin processes potential actions
against human gastric cancer through inducing cell apoptosis via acti-
vating the extrinsic and mitrochondrial pathways [25]. Loss of cell

Table 1
Deaths, YLDs, and DALYs attributable to various diseases (1990–2013).

Cause Death rank Deaths per 100,000 YLD rank YLDs per 100,000 DALY rank DALYs per 100,000

Cardiovascular diseases 1–1 231.3–241.4 11–9 211.2–295.6 3–1 4872.5–4601.7
Neoplasms 3–2 106.6–114.9 16–16 69.8–94.4 4–3 2873.4–2750.8
Chronic respiratory diseases 4–4 65.7–59.6 7–7 468.7–539.0 8–10 1900.0–1573.1
Diabetes, urogenital, blood, and endocrine diseases 8–5 29.6–41.2 5–4 714.7–915.0 12–8 1660.0–1976.6
Digestive diseases 11–13 19.8–16.3 14–14 128.2–118.0 18–17 747.4–521.4
Neurological disorders 13–9 19.2–27.6 6–5 700.3–828.5 15–13 1021.2–1173.0
Cirrhosis 14–12 15.8–17.0 21–21 7.9–7.6 19–18 511.5–514.4
Other non-communicable diseases 15–15 15.7–10.4 3–3 1535.0–1646.2 17–19 753.6–378.4
Mental and substance use disorders 19–19 3.5–3.9 1–1 2101.7–2258.4 7–5 2248.5–2417.0
Musculoskeletal disorders 21–20 1.2–1.6 2–2 1713.0–2040.9 11–7 1753.7–2085.7
Diarrhea, lower respiratory, and other common infectious diseases 2–3 148.4–66.3 10–11 268.8–200.0 1–2 10356.1–3487.2
Neonatal disorders 5–7 64.7–28.6 15–12 103.0–176.5 2–4 5684.9–2646.2
HIV/AIDS and tuberculosis 6–6 39.0–36.7 17–15 45.1–76.7 13–9 1612.8–1663.4
Neglected tropical diseases and malaria 10–14 20.6–13.9 8–10 390.9–280.5 9–12 1848.6–1265.6
Nutritional deficiencies 16–16 14.2–9.5 4–6 868.2–582.9 10–15 1777.7–1044.5
Other communicable, maternal, neonatal, and Nutritional diseases 17–17 10.1–5.7 18–18 61.0–49.8 5–6 2766.2–2385.9
Maternal disorders 18–18 7.1–4.1 19–19 21.4–18.7 20–20 428.3–251.6
Unintentional injuries 7–8 38.0–28.0 9–8 345.0–302.2 6–11 2510.7–1478.6
Transport injuries 9–10 21.7–20.7 12–13 180.3–142.3 14–14 1338.5–1101.5
Self-harm and interpersonal violence 12–11 19.8–17.4 20–20 19.4–14.7 16–16 971.2–789.6
Forces of nature, war, and legal intervention 20–21 1.99–0.70 13–17 151.5–54.9 21–21 257.1–85.3

YLDs= years living with disability. DALYs=disability-adjusted life-years.
Communicable and neonatal diseases (column 1–10), Non-communicable diseaes (column 11–17), Injuries (column 18–21).

Fig. 1. The papers about (A) TCMs and (B) dioscin researches published in
“PubMed” and “CNKI” databases from 1997 to 2017. The data from “PubMed”
and “CNKI” databases have indicated that the works on traditional Chinese
medicines (TCMs) and dioscin have achieved tremendous progress in recent
years.
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cycle control can lead to the proliferation of uncontrolled cells for the
development of cancer. Therefore, the selective cyclin dependent kinase
(CDK) inhibitor is one potent agent to treat cancer [26]. Dioscin can
induce G2/M phase arrest and apoptosis in SGC-7901 cells by inhibiting
CDK-activating kinase activity [27]. Moreover, Zhao, X.W. et al., have
found that dioscin shows cytotoxicity to human MGC-803 gastric cancer
cells and significantly inhibits tumor growth of xenografts in nude mice
via including DNA damage and cell cycle arrest [28]. In addition, iso-
baric tags for relative and absolute quantification (iTRAQ)-based pro-
teomics approach has found 121 differentially expressed proteins as-
sociated with cell apoptosis, cycle and migration caused by dioscin.
Recent studies have also indicated that long non-coding RNAs
(lncRNAs) are involved in the development of cancer [29]. In the study
of Ma, T. et al., high expression level of lncRNA HOTAIR has been found
in gastric cancer tissue, which can be significantly down-regulated by
dioscin [30].

2.3. Anti-liver cancer effect and mechanism of dioscin

Approximately 790,000 new cases and 818,000 deaths of liver
cancer worldwide in 2013 have been reported [31]. Currently, the
therapeutic methods including liver resection, palliative intra-arterial
therapies and transplantation have been used. However, long-term
prognosis of liver cancer remains poor because of chemotherapy -re-
sistant and high tumor recurrence [32]. Dioscin can dose-dependently
enhance caspase-3-dependent cell apoptosis in Huh7 cells [33]. The
works of Zhang, G.X. et al., have also demonstrated that dioscin can
inhibit the proliferation of hepatocellular carcinoma cells via inducing
morphological changes and DNA damage in Bel-7402 cells [34]. No-
tably, dioscin can also suppress tumor growth via inducing apoptosis in
nude mice bearing Bel-7402 cells. In addition, dioscin can effectively
reverse multidrug resistance in HepG2/ADR cells via inhibiting the
activity of MDR1 promoter and P-gp function [35].

2.4. Anti-acute myeloid leukemia effect and mechanism of dioscin

Acute myeloid leukemia is the most common form of adult leu-
kemia, and little progression has been made on developing effective
therapies. Mitogen-activated protein kinases (MAPKs) exert vital bio-
logical effects on apoptotic signals in myeloid leukemia [36]. In the
study of Wang, Y. et al., dioscin can notably induce the apoptosis of
myeloblast leukemia HL-60 cells through activating c-Jun N-terminal
kinase (JNK) and p38 MAPK [37]. In addition, the action of dioscin on
ADR-resistant erythroleukemic cells (K562/ADR) has been tested by
Wang, L.J. et al., and dioscin can reverse ADR-induced MDR through
reducing the mRNA and protein levels of MDR1 and NF-κB [38].

2.5. Anti-lung cancer effect and mechanism of dioscin

Lung cancer with high incidence, rapid progression and poor
prognosis is the leading cause of cancer-related death. Wei, Y.L. et al.,
have proved that dioscin can significantly induce cell apoptosis on
human A549, NCI-H446 and NCI-H460 lung cancer cells [39]. Fur-
thermore, Hsieh, M. J. et al., have found that autophagy induced by
disocin maybe one pathway for cell survival against apoptosis [40]. In
addition, epithelial-to-mesenchymal transition (EMT) is a key cellular
process during cancer development. Dioscin can suppress the migration
and invasion of A549 lung cancer cells by inhibiting transforming
growth factor-β1 (TGF-β1)-induced EMT [41]. Moreover, tyrosine ki-
nase inhibitors (TKIs) exhibit good clinical benefits in the treatment of
lung adenocarcinoma. The works of Wang, Y.C. et al., have indicated
that dioscin can act as a dual inhibitor of MEK/ERK and PI3K/AKT
signaling pathways to overcome TKIs resistance [42].

2.6. Anti-renal cancer effect and mechanism of dioscin

Total of 63,990 new cases and 14,400 deaths of renal cancer in 2017
have been found. TNF-related apoptosis inducing ligand (TRAIL) can

Fig. 2. Dioscin presents in several medicinal plants including Dioscoreae rhizoma, Dioscorea nipponica Makino, Dioscorea hypoglauca Palibin, Dioscorea bulbifera L,
Dioscorea Zingiberensis C.H. Wright and Dioscorea hispida. The images of these medicinal plants are obtained from the internet.
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induce the apoptosis of tumor cells. The study of Kim, Y.S. et al., have
found that dioscin can significantly enhance TRAIL-induced apoptosis
[43]. Gap junction plays key roles in growth, differentiation and
apoptosis on cancer cells. Zhang, G.Y. et al.,have indicated that dioscin
can promote the function of gap junction in human renal carcinoma cell
[44].

2.7. Anti-melanoma tumor effect and mechanism of dioscin

Melanoma has the features of high mortality, high invasion and high
metastasis. Three major pigment enzymes including tyrosinase, tyr-
osinase-related protein (TRP)-1 and TRP-2 play important roles in
melanoma tumor [45], and their activites can be regulated by micro-
phthalmia-related transcription factor (MITF) [46]. Dioscin can inhibit
α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis in
B16 cells via decreasing the expression levels of tyrosinase, TRP-1, TRP-
2 and MITF [47]. Connexin 43 (Cx43) is an important gap junction
protein in tumor micro- environment (TME), and the works of Kou,
et al., have found that dioscin can target Cx43 to activate macrophage
sensitivity and inhibit tumor cell malignancy [48].

2.8. Anti-prostatic cancer effect and mechanism of diosicn

The patients with prostate cancer usually accept surgery or anti-
androgen therapy at the early stage [49]. Prostate cancer stem cells
(PCSCs) are the cell origin of prostatic cancer, which paly important
roles in tumorigenesis. Our works have confirmed that dioscin has
potent inhibitory activity on PC3 cell-derived mammos- pheres via
activating estrogen receptor-β (ERβ) [50].

2.9. Other anti-cancer effects and mechanism of dioscin

Epithelial ovarian cancer is the leading cause of gynecologic cancer-
associated deaths among women, and cell apoptosis is closely related to
the occurrence, progress and metastasis of the cancer. Dioscin can dose-
and time-dependently inhibit cell proliferation and induce cell apop-
tosis in human ovarian cancer SKOV3 cells [51]. ROS accumulation can
cause cell apoptosis, mitochondrial damage, cytochrome C release and
programmed cell death-5 (PDCD5) nuclear translation. Wang, Z.Y.
et al., have found dioscin can induce ROS generation and apoptosis in
human Kyse510 esophageal cancer cells through increasing oxidative
stress via downregulating the espression levels of peroxiredoxin
(PRDX)-1 and PRDX-6 [52]. Laryngeal cancer is the common malignant
tumor of head and neck. In the works of Si, L.L. et al., dioscin causes cell
apoptosis and DNA damage, up-regulates ROS level, induces S-phase
arrest, and reduces invasion in human HEp-2 and TU212 laryngeal
cancer cells [53]. The actions of dioscin on human cervical carcinoma
HeLa and SiHa cells have been detected by Zhao, X.W. et al., and
dioscin can cause cell apoptosis through regualting ROS-mediated DNA
damage and mitochondrial signaling pathway [54]. Glioblastoma
multiforme is a common malignant brain cancer, and dioscin exerts a
promising inhibiting effect on glioblastoma cells via ehancing ROS ac-
cumulation, DNA damage and mitochondrial signals [55]. In addition,
dioscin can markedly suppress tumor size and increase survival rate in
glioma in vivo rat allograft model. Pancreatic cancer is one of the most
lethal solid malignancies in the Western world. Recently, microRNA
microarray analysis has been used to determine the underlying me-
chanisms of dioscin against pancreatic cancer, and total of 107 micro-
RNAs with differential changes have been found to prove that dioscin
exerts excellent activity against pancreatic cancer via miR-149-3 P/
Akt1 signaling pathway [56]. In recent years, the incidents of bladder
carcinoma in China have increased rapidly. Dioscin can induce de-
methylation of death-associated protein kinase-1 (DAPK-1) and ras-as-
sociation domain family 1 isoform A (RASSF-1) to cause apoptosis on
T24 cancer cells [57]. Song, X.L. et al., have checked the actions of
dioscin on NOZ and SGC996 gallbladder cancer cells, and dioscin can

significantly inhibit cell proliferation and migration [58]. Colorectal
cancer is the second leading cause of cancer-related deaths in the USA.
Li, S. et al., have found that dioscin can induce the apoptosis of colon
cancer cells through adjusting the phosphorylation levels of JNK and
p38-MAPK [59]. Osteosarcoma is one common primary bone tumor.
Liu, W.H. et al., have adopted in vitro and in vivo models, and dioscin
inhibits osteosarcoma stem- cell-like properties and tumor growth via
repressing Akt/glycogen synthase kinase 3 (GSK3)/β-catenin pathway
[60].

Together, the effects of dioscin against breast cancer, gastric carci-
noma, acute myeloid leukemia, lung cancer, ovarian cancer, renal
cancer, melanoma tumor, esophageal cancer, prostatic cancer, lar-
yngeal cancer, cervical carcinoma, liver cancer, glioblastoma, pan-
creatic cancer, gallbladder cancer and bladder cancer have attracted
more attentions, and these studies have described the mechanistic ac-
tions of dioscin on apoptosis, ROS generation, Ca2+ release, cell cycle
and DNA damage.

3. Protective effects and mechanisms of dioscin against organ
damages

3.1. Hepatoprotective effects of diosicn

Liver diseases are the major global public health problems in the
world [61]. Among them, acute liver injury caused by adverse drug
reactions accounts for more than 50% of the cases [62]. Moreover, liver
can be damaged by many toxic chemicals including carbon tetra-
chloride (CCl4), alpha-naphthylisothiocyanate (ANIT) and dimethylni-
trosamine (DMN) [63]. In addition, chronic liver diseases induced by
viral infection, alcohol abuse, and obesity can cause hepatic en-
cephalopathy, fibrosis and liver cancer [64]. Therefore, it’s urgent to
explore and develop effective hepatopro- tective candidates. Many
works have indicated that dioscin has potent hepatopro- tective effects
through regulating multiple targets and biological processes (Fig. 3).

3.1.1. Protective effects and mechanism of dioscin against acute liver
damage

Some chemicals and drugs including CCl4, lipopolysaccharide (LPS),
ANIT, DMN, acetaminophen (APAP) and ethanol have been widely used
to establish experimental models for estimating the activities of medi-
cines against acute liver injury. Extensive researches have proved that
dioscin can reduce serum levels of alanine aminotran- sferase (ALT),
aspartate transaminase (AST), and improve acute liver injury.

Cytochrome P450 2E1 (CYP2E1) can cause ROS production to in-
duce hepatic oxidative stress, inflammation and apoptosis, and finally
lead to cell necrosis and tissue damage. Lu, B.N. et al., have found that
dioscin shows significant protective effect against CCl4-induced acute
liver damage in mice, and the proteins including heat shock protein 5
(HSPA5), annexin A6 (ANXA6), isovaleryl-CoA dehydrogenase (IVD),
ribosomal protein S6 (RPS6), cytoglobin (Cygb), and nucleoside di-
phosphate kinase A (NDPK-A) may be the drug targets based on pro-
teomics assay [65]. Lu B.N. et al., have further found that dioscin can
inhibit inflammation, apoptosis, necrosis and lipid peroxidation [66]. In
addition, Zhao, X.M. et al., have investigated the effect of dioscin
against APAP-induced liver injury, and found that dioscin can improve
AST release, mitochondrial dysfunction and apoptosis in mice. Some
differentially expressed proteins including sulfite oxidase (Suox), cy-
toskeletal 18 (Krt18), regucalcin (Rgn), PRDX1, malate dehydrogenase
(MDH) and purine nucleoside phosphorylase (PNP) may be the drug
targets of the compound against APAP-induced liver injury, which
should be considered as biomarkers for investigating acute liver injury
[67].

LPS can induce serious sepsis, activate immunological system and
macrophages. Yao, H. et al., have showed that dioscin has potent action
against LPS-induced liver injury through inhibiting toll-like receptor 4
(TLR4) inflammatory signaling pathway [68]. In addition, Yao, H.
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et al., have also proved that dioscin has potent effects against ANIT-
induced intrahepatic cholestasis through regulating apoptosis and ROS
[69]. The study performed by Zhang, A.J. et al., have proved that
dioscin can ameliorate cholestasis by restoring hepatic transporter ex-
pressions [70]. DMN is a potent hepatotoxin, mutagen and carcinogen,
and thioacetamide (TAA) is another classic liver toxic chemical, which
have been used to establish experimental models. The works of Zhang,
W.X. et al., have indicated that dioscin exhibits protective effect against
DMN-induced liver insult through inhibiting TLR4 inflammatory
pathway and activating sirtuin 1 (Sirt1) antioxidant signaling pathway
[71]. Zheng, L.L. et al., have investigated the protective effect of dioscin
against TAA-induced acute liver injury, and dioscin can notably inhibit
oxidative stress and inflammation in liver via adjusting farnesoid X
receptor (FXR) signal pathway [72]. In addition, alcohol abuse can
cause alcoholic liver diseases with the morphological features of stea-
tosis, hepatitis, fibrosis and ultimately cirrhosis. In the paper of Xu, T.T.
et al., the actions of dioscin against alcoholic liver disease have been
investigated, and dioscin can notably improve liver steatosis, and de-
crease ALT and AST levels via ameliorating ethanol-induced oxidative
stress, mitochondrial function, inflammatory cytokine production and
apoptosis [73]. During I/R injury, activated Kupffer cells can produce
massive ROS. Our study has also proved that the protective effects of
dioscin against liver I/R injury may be through inhibiting inflammatory
cytokines, oxidative stress, apoptosis and necrosis [74].

3.1.2. Protective effects and mechanism of dioscin against chronic liver
damage

Overproduction of extracellular matrix (ECM) in liver can damage
hepatic architecture and normal function, and finally cause fibrosis,
cirrhosis and liver cancer. Molecular mechanistic researches have in-
dicated that hepatic stellate cells (HSCs) activation is an important ef-
fector in the process of hepatic fibrosis [75]. Briefly, HSCs can be

activated from quiescent cells to myofibroblast-like cells. Alcohol
abuse, obesity, hepatitis, biliary disease, metabolic disorders, drug-in-
duced chronic hepatic diseases, and continued exposure to chemicals or
poisons can cause liver fibrosis [76,77].

Multiple studies have proved that dioscin can notably improve he-
patic fibrosis, and inhibit cell viabilities of HSC-T6, LX-2 and primary
rat HSCs. Dioscin can reduce HSCs activation and collagen accumula-
tion based on the decreased levels of TGF-β1, α-SMA, collagen and
vimentin. in vivo, the hepatic fibrosis models induced by CCl4, alco-
holic, TAA, bile duct ligation (BDL) and DMN have been used to test the
actions of dioscin [78–82]. The results have confirmed that dioscin
exerts anti-fibrotic activities with the improved body weights, serum
AST, ALT and hydroxyproline levels via modulating multiple signaling
pathways. TGF-β1 can phosphorylate downstream receptor-activated
Smads signal [83]. Wnt/β-catenin pathway participates in HSCs acti-
vation [84]. Oxidative stress and inflammation also widely participate
in HSCs activation and matrix degradation [85]. Among them, TLR4/
MyD88 signaling exhibits potent action against inflammatory response
by decreasing NF-κB, interleukin (IL)-1, IL-6 and tumor necrosis factor-
α (TNF-α) levels [86]. Nrf2/Sirt1 signaling can reduce p38 MAPK
phosphorylation, and decrease the levels of collagen type I alpha 1
(COL1 A1), collagen type III alpha 1 (COL3A1), α-SMA and fibronectin
through inhibiting ROS production [87]. Our previous studies have
proved that the effects of dioscin against hepatic fibrosis may be via
inhibiting TGF-β1/Smads, Wnt/β-catenin and TLR4/MyD88 signal
pathways and activating Nrf2/Sirt1 signal pathway [78–82].

As shown in Fig. 4A, two-dimensional differential in-gel electro-
phoresis technology (2D-DIGE) has been used to identify the differen-
tially expressed proteins caused by dioscin in rats, and ten new bio-
markers including protein disulfide isomerase A3 (PDIA3), selenium-
binding protein 1 (SBP1), glutamine synthetase (GSS), senescence
marker protein 30 (RGN), hemopexin, keratin 8, keratin 18, vimentin,

Fig. 3. Dioscin possesses hepatoprotective effects through
regulating multiple targets and biological processes including
steatosis, inflammatory response, oxidative stress, apoptosis,
TGF-β/Smads, autophagy and MAPKs pathways. α-SMA, α-
smooth muscle actin; ALT, alanine aminotransferase; AST,
aspartate transaminase; Bax, Bcl2-associated X; Bcl-2, B-cell
lymphoma-2; COL1 A1, collagen type I alpha 1; COL3A1,
collagen, type III, alpha 1; HMGB-1, high mobility group box-1
protein; HO-1, heme oxygenase-1; IL, interleukin; IRF9, in-
terferon regulatory factor 9; ITGA5, inhibiting integrin alpha-
5; MAPKs, mitogen-activated protein kinases; MyD88, mye-
loid differentiation primary response 88; NAFLD, nonalcoholic
fatty liver disease; Nrf2, nuclear factor (erythroid-derived 2)-
like 2; ROS, reactive oxygen species; Sirt1, sirtuin 1; SDC-4,
syndecan-4; TGF-β1, transforming growth factor-β; TLR4, toll-
like receptor 4; TNF-α, tumor necrosis factor-α; TRAF6, TNF
receptor associated factor 6.
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annexin A5 (ANXA5) and dermatopontin (DPT) have been found [81].
Syndecan-4 (SDC-4) plays a crucial role in effects of dioscin on HSC-T6
cell adhesion and migration [87], and the network of the differentially
expressed proteins analyzed by the String 9.1 software is shown in
Fig. 4B. In addition, as shown in Fig. 4C, Xu L.N. et al., have adopted
the method of stable isotope labeling with amino acids in cell culture
(SILAC) and found that dioscin can alleviate hepatic fibrosis via af-
fecting multi-biological processes [88]. Moreover, dioscin can reduce
collagen synthesis in LX-2 cells, and integrin alpha-5 (ITGA5) is a po-
tent drug-target of dioscin based on molecular docking test (Fig. 4D).

3.1.3. Dioscin promotes liver regeneration
Currently, liver regeneration is a critical process after partial he-

patectomy [89]. Many studies have suggested that Notch1 and Jagged1

are critical players in liver proliferation [90]. Jagged1 can activate
Notch1 signal pathway, and cause the release of Notch1 intracellular
domain (NICD1). Then, NICD1 translocates into nucleus and results in
the transcription of proliferation-related genes. Dioscin can activate
Notch1 /Jagged1 pathway to promote liver proliferation [91].

3.2. Protective effects and mechanism of dioscin on cardiovascular and
cerebral vessels

Although arterial bypass and other surgical operations have been
widely applied, myocardial I/R injury has become a primary factor in
the treatment of coronary heart disease [92]. In the study of Qin, J. et.
al., the apoptosis of H9c2 cells induced by myocardial I/R can be pre-
vented by dioscin via adjusting apoptotic pathway [93]. Doxorubicin is

Fig. 4. Dioscin exerts anti-liver fibrosis effects via affecting mutiple signaling pathways and biological processes. (A) Representative 2D-gel image marked with a
total of 48 differentially expressed protein spots with red color for indicating the up-regulation of protein expressions and green color for showing the down-
regulation of protein expressions. (B) The network of the differentially expressed proteins found by the iTRAQ method in HSC-T6 cells treated by dioscin. (C)
Classification of the differentially expressed proteins found by SILAC proteomics in LX-2 cells treated by dioscin according to biological process. (D) The binding
mode of dioscin and ITGA5 protein. These images are obtained from our previous results published in the References [81,87,88].(For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article).
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an efficient chemotherapeutic drug which has been widely used in
clinical treatment. However, the acute and chronic cardiotoxicities in-
cluding arrhythmia, tachycardia, hypotension and refractory late-onset
cardiomyopathy limit its clinical application. Zhao, L.S. et al., have
found that dioscin can alleviate doxorubicin-induced cardiotoxicity via
inhibiting oxidative stress through modulating miR-140-5p signaling
pathway [94]. Cerebral I/R injury is one challenging clinical problem in
the treatment of acute ischemic stroke. Some pathological mechanisms
associated with cerebral I/R injury including oxidative stress, in-
flammation, and apoptosis have been implicated [95]. Dioscin shows
protective effect against cerebral I/R injury in virto and in vivo [96,97]
via inhibiting the expression level and nuclear translocation of high
mobility group box-1 protein (HMGB-1). Moreover, dioscin can de-
crease transcriptional activities of NF-κB to suppress inflammatory re-
sponse via inhibiting TLR4 signal. Also, small interfering RNA (siRNA)
and over-expression experiments have confirmed that diosicn processes
neuroprotective effect via regulating HMGB-1/TLR4 signal pathway.
Atherosclerosis, a chronic disease with the accumulation of lipids and
fibrous elements in large arteries, is the main cause of coronary artery
disease. Monocyte-endothelial adhesion is an early step in the process
of atherosclerosis. Dioscin can decrease monocyte adhesion via down-
regulating the expression levels of vascular cell adhesion molecule-1
(VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), and inhibit
endothelial lipase (EL) expression and NF-κB signal pathway [98].

3.3. Nephroprotective effects and mechanism of dioscin

Acute kidney injury associated with high morbidity and mortality is
one common disease in clinical. Hyperuricemia, kidney transplantation
and renal surgery-induced renal I/R injury, endotoxic (LPS) shock and
chemotherapy are the common causes of kidney injury [99]. Renal I/R
injury can cause the clinical syndrome of delayed graft function after
transplantation. Dioscin exerts protective effects against renal I/R in-
jury through inhibiting inflammatory response via down-regulating
HSP70/TLR4 signaling pathway [100]. Dioscin can also decrease BUN
and Cr levels, and ameliorate oxidative stress in vivo and in vitro
models of LPS-induced inflammatory kidney injury via increasing
miRNA let-7i level and thereby decreasing TLR4 inflammatory pathway
[101]. Cisplatin, an inorganic platinum compound with broad-spectrum
activities against tumours, can cause serious nephrotoxicities, which
limit its clinical applications. The works of Zhang, Y.M, et al., have
found that dioscin can attenuate cisplatin-induced renal injury in rats
and mice via down- regulating miR-34a level, and then activacting Sirt1
signaling pathway [102]. Furthermore, Zhang, Y.M. et al., have also
investigated the action of dioscin against doxorubicin-induced ne-
phrotoxicity, and found that dioscin can markedly attenuate cell injury
and nephrotoxicity in rats through inhibiting ROS level [103] via ac-
tivating FXR siganling pathway. In addition, some food additives can
also cause renal injury, and recent studies have shown excessive con-
sumption of fructose can promote acute and chronic kidney injury. The
works of Qiao, Y.J. et al., have indicated that dioscin can significantly
reduce fructose-induced renal injury through decreasing the levels of
Cr, BUN, and rehabilitating histopathological changes [104] via ad-
justing sirtuin 3 (Sirt3)-mediated signaling pathway.

3.4. Pulmonary protective effects and mechanism of dioscin

Airway mucus plays important roles against noxious chemicals, in-
vading pathogenic microorganisms and particles. Abnormality in mu-
cins always can cause severe pulmonary diseases. Lee, H.J. et al., have
investigated the effect of dioscin on airway epithelial NCI-H292 cells,
and found that dioscin can inhibit the gene expression and production
of MUC5AC mucin induced by epidermal growth factor (EGF) or
phorbol 12-myristate 13-acetate (PMA) [105]. Silicosis is caused by the
inhalation of respirable crystalline silica dust, which can result in pul-
monary fibrosis and even respiratory failure [106]. Li, C. et al., have

found that dioscin can postpone crystalline silica-induced pulmonary
fibrosis and exert protective actions in mice via inhibiting the secretion
of pro-inflammation and pro-fibrotic cytokine [107]. In addition,
dioscin can also inhibit signal-regulating kinase 1 (ASK-1)-p38/JNK
pathway and Smad3 phosphorylation in fibroblast. Furthermore, Zeng,
H.Q. et al., have investigated the protective effect and underlying me-
chanism of dioscin against acute lung injury induced by LPS, and found
that dioscin can significantly decrease total number of alveolar mac-
rophages and water content of lung in LPS-treated mice through
HSP70/TLR4 inflammatory signaling pathway [108].

3.5. Protective effects and mechanism of dioscin against gastric I/R injury

Many clinical conditions including ischemia gastrointestinal dis-
ease, vascular rupture or surgery and hemorrhagic shock can cause
gastric I/R injury. Dioscin can attenuate H/R insult in GES-1 cells and
gastric I/R injury in rats through inhibiting NF-κB and AP-1 transcrip-
tional activities, and pro-inflammatory cytokine responses via in-
hibiting PKC/ERK1/2 signal pathway [109].

4. Anti-metabolic diseases effects and mechanism of dioscin

Metabolic diseases are caused by a group of risk factors including
osteoporosis, diabetes, obesity and insulin resistance [110,111]. Non-
alcoholic fatty liver disease (NAFLD) is a clinicopathologic spectrum of
liver pathologies with excessive accumulation of fat in liver [112]. The
activity of dioscin against NAFLD has been investigated by Xu, L.N.
et al., and dioscin exerts obvious protective effects against NAFLD
through affecting multiple drug targets and signal pathways [113].
Using iTRAQ labeling coupled with nano-LC-TOFMS/MS analysis, 22
proteins including enoyl-CoA delta isomerase 1 (Eci1), acyl-CoA de-
hydrogenase short chain (ACADS), acyl-CoA synthetases long-chain 5
(ACLS5), aldehyde dehydrogenase 7 family member A1 (ALDH7A1),
aldehyde dehydrogenase 2 (ALDH2) and cytochrome P450 4 A2
(CYP4 A2) maybe the drug tragets of dioscin against NAFLD. Further-
more, obesity is featured by an excessive storage of body fat associated
with a great number of metabolic complications. Liu, M. et al., have
proved that dioscin can alleviate liver lipid accumulation symptoms,
increase oxygen consumption and energy expenditure in high-fat diet-
induced C57BL/6 J mice and ob/ob mice via inhibiting oxidative da-
mage, inflammation and MAPK phosphorylation levels [114]. Poudel,
B. et al., have also showed that dioscin can inhibit adipocyte differ-
entiation in 3T3-L1 cells and decrease weight gain in mice against high-
fat diet-induced obesity [115].

Osteoporosis can be caused by excessive bone resorption, and cor-
recting the imbalance between bone resorption and formation is ef-
fective method for treating osteoporosis [116]. Dioscin can inhibit the
receptor activator of NF-κB ligand (RANKL) -mediated osteoclast dif-
ferentiation and bone resorption in vitro. Furthermore, in vivo study
has verified the protective activity of dioscin in LPS-induced osteolytic
mice modle by inhibiting NF-κB signaling pathway and nuclear factor of
activated T-cells 1 (NFATc1) transcriptional activity [117]. Our pre-
vious paper has also found that dioscin can notably improve the bio-
chemical indexes and microarchitecture in ovariectomy (OVX)-induced
animal models through promoting osteoblastogenesis and inhibiting
osteoclastogenesis [118]. Osteoblasts are also regulated by hormonal
and local factors including Wnt/Lrp5/β-catenin and estrogen receptor
(ER) signaling pathways. Zhang, C.F. et al., have found that dioscin can
increase the proliferation and differentiation of osteoblasts by up-reg-
ulating ER and Wnt/Lrp5/ β-catenin signaling pathways [119]. In ad-
dition, Zhun, C. et al., have identified that dioscin can promote MC3T3-
E1 cell proliferation and differentiation by regulating autophagy [120].
Dioscin maybe a novel and potent candidate for the treatment of os-
teoporosis.

Hyperuricemia with high level of blood uric acid has been re-
cognized as a risk factor of hypertension, gout, cardiovascular disease,
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diabetes and chronic kidney disease [121,122]. Dioscin can sig-
nificantly decrease serum uric acid and Cr levels, and reduce renal
pathological lesions caused by hyperuricemia in mice [123]. Urate
transporter 1 (URAT1) has been identified to be involved in renal
transportion of uric acid. Moreover, ATP-binding cassette subfamily G
member 2 (ABCG2) is an efficient urate exporter to mediate renal and
intestinal urate excretion, and controls serum uric acid levels. Dioscin
can decrease serum level of uric acid through inhibiting URAT1 and
promoting ABCG2.

Furthermore, type 2 diabetes is one common metabolic disorder.
However, current therapies have some undesirable side effects in-
cluding weight gain, dropsy, drug resistance and high rates of econdary
failure [124]. Hence, it is necessary to disover more effective anti-
diabetic drugs with less side effects. Yu, H. et al., have evaluated the
efficacy of the total saponins from Dioscorea nipponica Makino (TSDN)
against T2DM [125]. The results showed that TSDN can significtantly
decrease the fasting blood glucose, ameliorate the levels of oral glucose
and insulin tolerance test, and markedly increase body weight and
serum insulin. Via adjusting MAPKs, NF-κB, peroxisome pro-
liferatoractivated receptor γ (PPARγ) and glycogen synthase kinase-
3beta (GSK-3β) pathways.

5. Other pharmacological activities of dioscin

Adenovirus, a common cause of diarrhea, accounts for about 10% of
acute respiratory infections in young children [126]. Vesicular stoma-
titis virus (VSV), a member of Rhabdoviridae family, can lead to oral
diseases including mucosal vesicles and ulcers in mouth [127]. Hepa-
titis B virus (HBV) belongs to Hepadnaviridae family, and HBV infection
can cause liver disease and hepatocellular carcinoma [128]. Up to now,
there have no efficient antiviral drugs to treat adenoviral infections,
VSV and HBV. According to the research of Liu, C.H. et al., antiviral
effects of dioscin have been tested and dioscin can block the initial stage
of adenovirus infection in 293 cells and affect the host cell's response
for viral infection [129]. Moreover, dioscin exerts anti- VSV infection
action prior to infection. In addition, dioscin has potent inhibitory ef-
fect on the secretion of Hepatitis B e-antigen (HBeAg) and Hepatitis B
surface antigen (HBsAg) in HepG2 2.2.15 cells. Candida albicans can
lead to candidiasis, which is the primary cause of notable morbidity and
mortality in immunocom- promised patients [130]. In the study of Cho,
J.Y. et al, dioscin exerts the effect of membrane disruption via inducing
morphological change and rhodamine leakage of the giant unilamellar
vesicles (GUVs) [131]. Rheumatoid arthritis is a chronic autoimmune
disease associated with serious cardiovascular complications. Guo, Y.C.
et al., have detected the therapeutic effect of dioscin on collagen-in-
duced arthritis (CIA), and found that dioscin can regulate the propor-
tion of Th1/Th2 cells [132]. In addition, dioscin can also balance the
Th17 and Treg cell specific transcription factor retinoic acid receptor-
related orphan receptor gamma (RORγ) and forkhead box P3 (Foxp3),
and inhibit inflammatory reaction in CIA [133–135]. Growth hormone
is a peptide hormone consisting 191 amino acids, which has been used
to treat dwarfism and some diseases including obesity, osteoporosis and
aging; and Lee, H.Y. et al., have also found that dioscin can induce the
release of growth hormone in rats [136].

6. Clinical application

Currently, there have no clinical studies about dioscin because it is
only one lead compound not a drug that can not be used on humans.
However, some traditional Chinese medicines (TCMs) containing
dioscin as the major active compound have been widely used in clinical.
Liuwei Dihuang decoction (LW) is one of the most famous TCM for-
mulae, which has been used to treat some kinds of diseases including
cancer, neurosis, neurasthenia, dementia, Parkinson's disease, osteo-
porosis, diabetics, hypertension, nephritis, and thrombocytopenic pur-
pura with the characteristic features of kidney Yin deficiency since Song
Dynasty probably 900 years ago [137,138]. In addition, another pop-
ular formula-Di’ao Xinxue kang (Di’ao XXK) prepared from Dioscorea
nipponica Makino has anti-coronary disease, anti- angina pectoris, and
anti-myocardial ischemia effects [139], which has been used for many
years in China to treat coronary heart disease [140]. Furthermore,
Dioscornin Tablet contains some kinds of saponins that are extracted
from Dioscorea nipponica, which has been used to treat Ca2+ overload in
cardiomyocytes of coronary heart disease in clinical [141]. Therefore,
dioscin maybe a potential drug candidate for the further clinical trials.

7. Conclusions

In conclusion, dioscin has attracted a great attention worldwide,
and hundreds of papers have been reported to describe the pharma-
cological activities and mechanisms of this natural product (Fig. 5).
Most of these researchers have described the mechanistic effects of
dioscin on oxidative stress, inflammation, apoptosis, autophagy, lipid-
lowering and immunization on multiple body systems. This review
paper addressed the effects of dioscin on multiple targets and signal
pathways in a variety of diseases. Dioscin exerts the potent anti-cancer
activities through regulating DNA damage, cell cycle arrest, apoptosis,
autophagy, ROS level and Ca2+ release, and protects multiple organs

Fig. 5. Pharmacological activities of dioscin reported in recent years. In recent
years, dioscin has reached more and more attention with its potent effects to
treat multiple organ injuries and metabolic diseases as well as its anti-cancer
activities through adjusting multiple targets and multiple signals. TLR4, toll-
like receptor 4; MyD88, myeloid differentiation primary response 88; TRAF6,
TNF receptor associated factor 6; IKKs, IkB kinases; JNK, c-Jun N-terminal ki-
nase; AP-1, activating protein-1; NF-κB, nuclear factor κB; STAT3, signal
transducer and activator of transcription 3; FXR, farnesoid X receptor; Nrf2,
nuclear factor (erythroid-derived 2)-like 2; Sirt1, sirtuin 1; TGF-β, transforming
growth factor-β.
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injuries via the inhibiton of inflammation, apoptosis, necrosis, lipid
peroxidation and mitochondrial dysfunction. Moreover, dioscin has the
abilities against metabolic diseases through affecting lipid accumula-
tion, oxidative damage, autophagy and glucose metabolism. Mean-
while, dioscin can also inhibit viruses and bacteria, regulate im-
munization and induce growth hormone. These years, we have done
many works on dioscin, and found that these diverse therapeutic ac-
tions may involve in the TLR4/MyD88, Sirt1/Nrf2, FXR and TGF-β/
Smads signal pathways. However, the currently available pharmaco-
dynamic and mechanistic data are derived from in vitro cell experi-
ments and in vivo rodent models, which require additional translator
work before the human-specific clinical conclusions to be drawn.
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