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Abstract
Background: Currently, the diagnosis of invasive pulmonary aspergillosis (IPA) mainly 
depends on the integration of clinical, radiological and microbiological data. Artificial 
intelligence (AI) has shown great advantages in dealing with data-rich biological and 
medical challenges, but the literature on IPA diagnosis is rare.
Objective: This study aimed to provide a non-invasive, objective and easy-to-use AI 
approach for the early diagnosis of IPA.
Methods: We generated a prototype diagnostic deep learning model (IPA-NET) com-
prising three interrelated computation modules for the automatic diagnosis of IPA. 
First, IPA-NET was subjected to transfer learning using 300,000 CT images of non-
fungal pneumonia from an online database. Second, training and internal test sets, 
including clinical features and chest CT images of patients with IPA and non-fungal 
pneumonia in the early stage of the disease, were independently constructed for 
model training and internal verification. Third, the model was further validated using 
an external test set.
Results: IPA-NET showed a marked diagnostic performance for IPA as verified by the 
internal test set, with an accuracy of 96.8%, a sensitivity of 0.98, a specificity of 0.96 
and an area under the curve (AUC) of 0.99. When further validated using the external 
test set, IPA-NET showed an accuracy of 89.7%, a sensitivity of 0.88, a specificity of 
0.91 and an AUC of 0.95.
Conclusion: This novel deep learning model provides a non-invasive, objective and 
reliable method for the early diagnosis of IPA.

K E Y W O R D S
artificial intelligence, computed tomography, deep learning, invasive pulmonary aspergillosis, 
predictive medicine, retrospective study
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1  |  INTRODUC TION

The incidence of invasive pulmonary aspergillosis (IPA) has increased 
dramatically during the past two decades, owing to the widespread 
use of broad-spectrum antibiotics, systemic administration of glu-
cocorticoids and immunosuppressants, and the increased number 
of immunocompromised patients with haematological malignancies, 
solid organ transplantations, diabetes mellitus and acquired immu-
nodeficiency syndrome. The widespread application of chemora-
diotherapy and molecular targeted therapy has also played a role 
in the high prevalence of IPA.1 The gold standard for IPA diagnosis 
is exclusively pathological examination; however, only 12%–60% of 
patients were diagnosed pre-mortem owing to the difficulty of inva-
sive specimen sampling.2 Currently, recommendations by guidelines 
for the diagnosis of IPA are mainly based on a comprehensive anal-
ysis of host factors, chest computed tomography (CT) image find-
ings and microbiologic evidence, and diagnoses of IPA are classified 
into proven, probable and possible categories, along with a graded 
therapeutic strategy.3,4 Although this strategy is clinically applica-
ble, it largely depends on individual experience and the subjective 
judgement of the attending physician or radiologist, resulting in a 
high misdiagnosis rate and a subsequent in-hospital mortality rate 
of 30%–60%.5

Pre-emptive therapy confers morbidity and mortality advan-
tages in the patient population with IPA, arousing an urgent need for 
a non-invasive, objective and easy-to-use method for early diagno-
sis.6 The deep learning algorithm is an important method of artificial 
intelligence, which extracts advanced abstract features from clinical 
information and medical images through a hierarchical neural net-
work, achieving automatic diagnosis through self-learning. Existing 
studies have shown that the deep learning algorithm can improve 
diagnostic accuracy in conditions such as skin cancer, liver disease, 
colon cancer, brain tumour, lung cancer, pneumonia and coronavirus 
disease (COVID-19).7–14 Given the important role of chest CT images 
and clinical characteristics in the diagnosis of IPA, for the first time, 
we constructed a prototype deep learning model for the early diag-
nosis of IPA, and verified the diagnostic performance of the model 
internally and externally.

2  |  MATERIAL S AND METHODS

2.1  |  Patient enrolment and grouping

This project was implemented at two teaching hospitals of Southern 
Medical University and one specialised chest hospital in Guangzhou, 
China. The authors confirm that the ethical policies of the journal, 
as noted on the journal's author guidelines page, have been adhered 
to and the appropriate ethical review committee approval has been 
received from the hospital medical research ethics committees. 
The need for written informed consent was waived given the 
retrospective nature of the study.

We queried patient data associated with IPA from 1 January 
2012 to 30 June 2021 at the three hospitals through the Electronic 
Medical Record System (eMRS), and manually reviewed the out-
comes of histopathological examination. We enrolled patients who 
met all the following inclusion criteria: (1) age ≥18 years; (2) invasive 
syndromes of Aspergillus and radiographic abnormalities; (3) typically 
dichotomous and septate hyphae present on microscopic analysis of 
the biopsied sterile tissue specimens via immunohistochemical stain-
ing, accompanied by the evidence of associated tissue damage3; (4) 
complete clinical data and (5) follow-up possible through the eMRS 
from admission to discharge or death. In contrast, patients with any 
of the following criteria were excluded: (1) a possible or probable 
diagnosis of IPA; (2) a history of IPA prior to pathological diagnosis 
or chronic cavitary pulmonary aspergillosis; (3) tracheobronchial and 
allergic bronchopulmonary aspergillosis; (4) lung infection caused by 
other fungi or pathogens and (5) missing more than a third of clinical 
data, including those pertaining to clinical characteristics, thoracic 
imaging and laboratory examinations.

To assess the resolution of the model, a control cohort was es-
tablished. Patients who had a diagnosis of pneumonia at discharge, 
with definitive non-fungal aetiologies and were hospitalised during 
the study were retrieved and matched 1:1 with IPA patients in 
their respective hospitals, with age (±5 years) and sex as matching 
variables.

2.2  |  Data collection

According to guidelines and the literature,3,4,15 data regarding 
demographics and clinical characteristic of the patients with IPA and 
non-fungal pneumonia were collected and entered into electronic 
case report forms by two recorders. To improve the performance of 
early diagnosis, only clinical data and chest CT scan taken at the time 
of presentation for suspected IPA prior to histopathologic diagnosis 
were used. For patients with multiple hospitalisations, only the 
data recorded before the first pathological diagnosis of IPA were 
collected. The CT image findings of lung lesions in both cohorts were 
sorted by two independent radiologists. Positive Aspergillus cultures 
of lower respiratory secretions were considered eligible for model 
training and validation as a clinical characteristic if the specimen had 
≤10 squamous cells and ≥25 white blood cells per low power field or 
a ratio of squamous cells to white cells of <2.5.

2.3  |  Chest CT image pre-processing

Before model training, image standardisation and resizing method 
were adopted to eliminate differences in CT images due to differ-
ent equipment and software used in different medical settings, and 
to facilitate the recognition of images by the model. All CT images 
used in this study were tri-channel grey images, that is, each pixel is 
represented by three numerical values R, G, B and R = G = B. During 
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    |  3WANG et al.

image standardisation, the mean value was subtracted from the R, G 
and B value for each channel of each CT image and divided by the 
standard deviation, yielding standardised image outputs. The mean 
and standard deviation were calculated from the R, G and B values of 
the CT images in the training set. After that, the standardised images 
were resized to a fixed 256 × 256 pixel size.

2.4  |  Deep learning model configuration

The deep learning model, named IPA-NET, consists of three 
interrelated modules, including the DenseNet121 Network,16 
Feature Concatenation and the Fully Connected Network. Each 
module contains several computing units consisting of neurons, 
including the input layer, convolutional layer,17 pooling layer, batch 
normalisation layer, rectified linear unit (ReLU) layer, embedding 
layer, dropout layer and fully connected layer. All of these layers 
are integrated into IPA-NET to simulate the analytic process similar 
to that of the human brain, which is capable of being self-taught. 
Briefly, the first module (the DenseNet121 network) extracts the 
features of each pre-processed CT image inputted by the Input 
Layer, convolutes them into a one-dimensional feature vector, and 
then outputs to the second module (the Feature Concatenation) 
which receives all clinical features of the same patient imported by 
the embedding layer, coverts them into one-dimensional vectors and 
concatenates with the CT image feature vector in a sequential order, 
and forms a new feature vector and outputs to the third module. 
The third module, the Fully Connected Network, consists of a Fully 

Connected Layer and a Dropout Layer. Upon receiving the output 
of the Feature Concatenation, it identifies and classifies the feature 
vectors of the data, and then produces and outputs the final results. 
The results are displayed as IPA or non-IPA (Figure 1).

2.5  |  Construction of training and test sets

The pre-processed CT images and clinical features including 
comorbidities, medical history, laboratory examinations and CT 
image findings of the two cohort patients in the first two hospitals 
were randomly divided into a training set and an independent 
internal test set at a ratio of 9:1. An independent external test set 
was also constructed using patient data from the third hospital for 
further verification of the model. Since clinical features are binary 
variables, we assigned a weight of 0 to ‘no’ and 1 to ‘yes’. During 
dataset construction, each CT image and all clinical features of the 
same patient were combined and labelled as IPA or non-IPA and 
allocated to the same subset (Figure 2).

2.6  |  Model training and verifications

The training process is shown in Figure 1. First, the transfer learn-
ing fine-tuning method was used to expand the training data, 
improve the generalisation ability of the model and prevent over-
fitting.7,18 For this purpose, 300,000 single-channel grey chest 
CT images published on the website of China National Center for 

F I G U R E  1  Schematic diagram of the deep learning model. Notes: IPA-NET consists of three interrelated modules and neurons. Module 1 
(DenseNet121 Network) extracts and convolutes and outputs CT image feature vector. Module 2 (Feature Concatenation) receives inputted 
CT image feature vector and clinical features of the same patient and concatenates them sequentially into a new feature vector. Module 3 
(Fully Connected Network) receives the output of the second module, classifies the feature vectors of the data and outputs the final results. 
CT, computed tomography; IPA, invasive pulmonary aspergillosis; The circles inside the modules represent neurons.
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4  |    WANG et al.

Bioinformation (CNCB),19 which predominantly consisted of images 
obtained from patients with bacterial, viral and mycoplasma pneu-
monia, were converted into tri-channel grey images and used for 
transfer training of the model, mainly the first three dense blocks 
of the DenseNet121 network module (the red part in Figure 1). In 
this way, the deep learning model could master the basic features 
of the chest CT images in advance. Second, the training set was 
used to train the fourth dense block of the DenseNet121 network 
module (blue part in Figure 1) to ensure that the DenseNet121 net-
work masters the CT image features of IPA. While the fourth dense 
block was being trained, the first three dense blocks were frozen. 
Third, the Fully Connected Network was trained by the concate-
nated feature vectors from the second module to generate results.

During the training process, a total of 500 training epochs were 
completed. In each epoch, the model received a batch of CT images, 
clinical features and their labels, and produced model parameters. 
The initial learning rate of training was set to 0.001, which deter-
mined the degree of continuous update and automatic adjustment 
of model parameters. A set of model parameters was generated per 
20 training epochs, which was saved and used for the model verifi-
cation using the internal test set without the labels. The parameters 

with the best diagnostic efficacy were selected as the final model 
parameters and further verified using the external test set.

2.7  |  Model attention

The deep learning visualisation method was used to generate an at-
tention map to show the suspicious areas identified by IPA-NET that 
attracted the most attention of the model.20 A cut-off value of 0.5 
was used to preserve the high response of the area suspicious of IPA.

2.8  |  Performance comparison

First, image feature extraction ability was compared among 
four convolutional neural network-based deep learning models: 
DenseNet121, ResNet50, VGG19 and Inception-V3, which were 
constructed previously for the diagnosis of various diseases.16,21–23 
We employed 1.2 million colour pictures from the ImageNet for 
transfer learning of the models.24 Then, these models were further 
trained and validated using only the chest CT images of the training 

F I G U R E  2  Patient enrolment and study flowchart. CT, computed tomography; IPA, invasive pulmonary aspergillosis.

Patient enrolled in one hospital 

Proven IPA 
-  n = 74 patients 

Proven IPA 
-  n = 46 patients 

Non-fungal pneumonia 
-  n = 46 patients 

Training set (90%) 
-  n = 132 patients 
-  3272 chest CT images 
-  Clinical characteristics 

Internal test set (10%) 
-  n = 16 patients 
-  378 chest CT images 
-  Clinical characteristics 

Internal verification 

External test set 
-  n = 92 patients 
-  2046 chest CT images 
-  Clinical characteristics 

External verification 

Patient data retrieval 
173 IPA patients 
312 non-fungal pneumonia patients 
Hospitalised between 1 Jan 2012 and 30 Jun 2021 

Patient enrolled in two hospitals 

Non-fungal pneumonia 
-  n = 74 patients 

Data splitting 

IPA-NET training 
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    |  5WANG et al.

and internal test sets. Second, to compare the diagnostic efficacy 
of IPA-NET with these four deep learning models, IPA-NET (IPA-
NET1) was also trained using the same 1.2 million colour pictures 
for transfer learning, and then trained and validated using both the 
chest CT images and clinical characteristics of the training and inter-
nal test sets. Third, to evaluate the effect of transfer learning on the 
diagnostic performance, we trained IPA-NET with either 1.2 million 
colour pictures (IPA-NET1) or the 300,000 chest CT images. Then, 
these two models were trained and internally validated using both 
the chest CT images and clinical characteristics.

2.9  |  Statistical analysis

Continuous variables are presented as means and standard deviations, 
and discrete variables as frequencies and percentages. The random 
forest regression method was used to fill in missing clinical data.25 
Variables with large amounts of omitted data (e.g., galactomannan 
test) were excluded. Accuracy, precision, sensitivity, specificity, 
area under the receiver operating characteristic curve (AUC) and 
F1 score, were used to evaluate the diagnostic performance of IPA-
NET and expressed as percentages with 95% confidence intervals 
(CIs).26 All deep learning methods, statistical analyses, and graphing 
were performed using the Pytorch toolkit and Python 3.7 (Python 
Software Foundation, www.python.org).

3  |  RESULTS

3.1  |  Patient enrolment and basal characteristics

A flowchart of patient data retrieval and the study is shown in 
Figure  2, and the demographics and clinical characteristics of the 
two cohorts of enrolled patients are shown in Table  1. In the IPA 
cohort, 44.2% of patients had a history of tuberculosis, whereas in 
the control cohort, 9.2% had a history of tuberculosis, with bacterial 
pneumonia accounting for 92.5%, followed by viral pneumonia in 
3.3%. Appropriately, 29 clinical characteristics and 6 to 42 CT images 
of lung lesions were collected from each patient, and the number of 
CT images in the two groups was comparable.

3.2  |  Training effect of IPA-NET

During the 500 training epochs of the model training, the diagnos-
tic accuracy of the model gradually increased, while the training loss 
gradually decreased, and the two curves of accuracy and training loss 
eventually stabilised. No obvious over-fitting was observed (Figure 3).

3.3  |  Model diagnostic efficacy

When tested using the internal test set, IPA-NET showed a 
diagnostic accuracy of 96.8%, a precision of 0.96, a sensitivity of 

0.98, a specificity of 0.96, an AUC of 0.99 (95% CI, 0.98–0.99), and 
an F1 score of 0.97. When further verified using the external test 
set, IPA-NET showed an accuracy of 89.7%, a precision of 0.91, a 
sensitivity of 0.88, a specificity of 0.91, an AUC of 0.95 (95% CI, 
0.92–0.95) and an F1 score of 0.89 (Figure 4).

3.4  |  Model attention to suspicious lesions

Suspected IPA-related lesions in the CT images detected by IPA-NET 
are shown in Figure 5. Regardless of whether the internal or external 
test set was used, the attention maps showed that IPA-NET was able 
to detect IPA-related lesions and label them as highly responsive 
areas, indicating that the model can adequately learn the features of 
chest CT images and respond appropriately.

3.5  |  Comparison of different models

DenseNet121 shows better image feature extraction ability than 
other convolutional neural network-based deep learning models. 
The diagnostic efficacy of IPA-NET1 was superior to that of 
DenseNet121, and IPA-NET showed the best performance among 
all models when validated using the internal test set (Table 2).

4  |  DISCUSSION

In this study, IPA-NET showed optimal diagnostic performance for 
IPA, with high accuracy, precision, sensitivity, specificity, AUC and 
F1 score as verified using the internal or external test sets. It only 
takes about 10 s to make a diagnosis. The relatively large AUCs of the 
internal and external validations indicate that IPA-NET can identify 
new CT images and clinical characteristics that have not previously 
entered the model. The relatively high F1 score shows that the model 
has good classification ability without over-fitting. Nonetheless, 
the diagnostic performance of the model declined when validated 
externally, with more false positives and negatives. This may have 
occurred because IPA patients in the external test set had fewer 
clinical characteristics than those in the training set, which might 
lead to false negatives. In addition, due to insufficient data, the 
model might fail to distinguish similar CT images and clinical features 
of IPA in the training set from those of non-fungal pneumonia in the 
external test set, leading to false positives.

4.1  |  Visualisation in deep learning

We employed a visualisation technique to show suspicious areas of 
interest to the model.20 Once the model determines that the patient 
has IPA, it tells the clinician which area on the CT image attracts 
the model's attention the most. Although the CT image manifes-
tations of IPA patients varied, IPA-NET could still detect the sus-
pected regions, including cavities, crescents, multiple nodules and 
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6  |    WANG et al.

signs of bronchiectasis, indicating that the model had fully grasped 
the image features of IPA and was able to make respond appro-
priately (Figure  5). Although image segmentation is often used in 

deep learning to improve model recognition ability, imaging mani-
festations such as nodules and cavities near the pleura may be seg-
mented. To avoid the segmentation of these manifestations, we 

TA B L E  1  Demographic and clinical characteristics of patients with IPA and non-fungal pneumonia.

Variables

From two hospitals From one chest hospital

IPA group (n = 74) Control group (n = 74) IPA group (n = 46)
Control group 
(n = 46)

Age, years; mean ± SD 51.01 ± 13.05 53.5 ± 14.62 50.13 ± 12.85 52.2 ± 13.71

Sex, n (%)

Male 41 (55.4) 41 (55.4) 36 (78.3) 36 (78.3)

Female 33 (44.6) 33 (44.6) 10 (21.7) 10 (21.7)

Comorbidities, n (%)

Cancer 17 (23) 14 (18.9) 0 (0) 0 (0)

Hypertension 10 (13.5) 23 (31.1) 5 (10.9) 23 (50)

Diabetes mellitus 15 (20.3) 10 (13.5) 10 (21.7) 0 (0)

COPD 6 (8.1) 5 (6.8) 2 (4.3) 0 (0)

Pulmonary tuberculosis 12 (16.2) 9 (12.2) 41 (89.1) 2 (4.3)

Solid organ transplantation 1 (1.4) 1 (1.4) 0 (0) 0 (0)

Bone marrow transplantation 6 (8.1) 2 (2.7) 0 (0) 0 (0)

Immune disorders 1 (1.4) 3 (4.1) 0 (0) 0 (0)

Calculosis 10 (13.5) 8 (10.8) 7 (15.2) 0 (0)

MODS 3 (4.1) 4 (5.4) 0 (0) 0 (0)

Medical history, n (%)

Body temperature >38°C 16 (21.6) 12 (16.2) 3 (6.4) 0 (0)

Use of immunosuppressant 9 (12.2) 2 (2.7) 0 (0) 0 (0)

Radiochemotherapy 11 (14.9) 6 (8.1) 0 (0) 0 (0)

Long-term steroid use 8 (10.8) 6 (8.1) 1 (2.2) 2 (4.3)

Long-term use of broad-spectrum 
antibiotics

44 (59.5) 37 (50) 19 (41.3) 7 (15.2)

Multiple hospitalisations 14 (18.9) 19 (25.7) 6 (13) 0 (0)

History of surgery 21 (28.4) 25 (33.8) 8 (17.4) 0 (0)

Laboratory examination, n (%)

Neutropenia (<0.5 × 109/L) 10 (13.5) 5 (6.8) 2 (4.3) 1 (2.2)

Lymphopenia (<1.1 × 109/L) 42 (56.8) 34 (45.9) 13 (28.3) 0 (0)

Positive G test 12 (16.2) 12 (16.2) 8 (17.4) 0 (0)

Positive Aspergillus culturea 17 (23) 1 (1.4) 3 (6.4) 0 (0)

CT image findings, n (%)

Multiple nodular shadow 53 (71.6) 25 (33.8) 33 (71.7) 2 (4.3)

Cavity sign 27 (36.5) 5 (6.8) 39 (84.8) 0 (0)

Halo sign 1 (1.4) 0 (0) 0 (0) 0 (0)

Air crescent sign 5 (6.8) 0 (0) 2 (4.3) 0 (0)

Subpleural nodules 10 (13.5) 4 (5.4) 0 (0) 0 (0)

Bronchiectasis 29 (39.2) 23 (31.1) 29 (63) 21 (45.7)

Ground glass shadow 15 (20.3) 6 (8.1) 1 (2.2) 0 (0)

Multiple patchy shadows 47 (63.5) 47 (63.5) 40 (87) 44 (96)

Abbreviations: COPD, chronic obstructive pulmonary disease; CT, computed tomography; G test, test for 1,3-β-D glucan antigen detection; IPA, 
invasive pulmonary aspergillosis; MODS, multiple organ dysfunction syndrome.
aLower respiratory secretion culture.

 14390507, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

yc.13540 by <
Shibboleth>

-student@
m

anchester.ac.uk, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7WANG et al.

used unsegmented CT images for model training and verification. 
Consequently, IPA-NET could still detect the suspicious areas in 
the CT images, without interference from the area outside the lung 
fields.

4.2  |  Comparison between IPA-NET and 
existing models

To the best of our knowledge, IPA-NET is the first deep learning 
model built for the automatic diagnosis of IPA. When compared with 
two clinical algorithms, the model showed an improved diagnostic 
performance. Rozaliyani et al. presented a scoring model with four 
weighted risk factors that yielded a diagnostic sensitivity of 77.4%, a 
specificity of 48.4% and an AUC of 0.69 (95% CI, 0.57–0.79).27 Blot 

et al. also proposed a model based on clinical information analysis 
to distinguish invasive infection from fungal colonisation in critically 
ill patients with positive Aspergillus cultures in secretions from the 
low respiratory tract, and then validated by biopsy or autopsy. The 
model showed a sensitivity, specificity and AUC of 92%, 61%, and 
0.76 (95% CI, 0.67–0.85), respectively.28 Compared with these 
clinical algorithms, our model has the following advantages: (1) 
IPA-NET employs a hierarchical neural network module to extract 
features from CT images and clinical characteristics, which might not 
be detected by the naked eye; (2) CT images and clinical features 
are readily available before a definitive diagnosis is made, which 
is conducive to early diagnosis and (3) the diagnostic process is 
automated and requires no manual intervention.

In the present study, we selected the DenseNet121 net-
work to build IPA-NET, because DenseNet121 has shown better 
image feature extraction ability among four convolutional neural 
network-based deep learning models, and IPA-NET (IPA-NET1) 
showed better diagnostic efficacy when compared with these 
models (Table 2). The reason might be that IPA-NET1 can concate-
nate imaging and clinical features so that the model can fully learn 
the most features of IPA. Besides, the effect of transfer learning 
using 300,000 chest CT images is better than that obtained using 
1.2 million colour pictures; thus, the diagnostic performance of 
IPA-NET is better than that of IPA-NET1. The reason might be 
that IPA-NET has acquired the ability to learn low-order features 
of the chest CT images in the process of transfer learning, which 
contributes greatly to improving the model performance. When 
tested using the external test set, IPA-NET still showed good diag-
nostic and classification performance for unknown data, as shown 
in Table 2.

Our study had some limitations. First, although the initial results 
were satisfactory, insufficient data may affect the diagnostic per-
formance of the model. We believe that greater accuracy could be 
achieved by including more CT images and clinical information for 

F I G U R E  3  Trends of training loss and accuracy during model 
training. Note: the diagnostic accuracy of the model gradually 
increased, while the training loss gradually decreased, and the two 
curves of accuracy and training loss eventually stabilised during the 
model training process. No obvious over-fitting was observed.

F I G U R E  4  Receiver operating characteristic curves of the efficacy of IPA-NET in diagnosing IPA. Note: the figure indicates the AUCs 
of IPA-NET validated using the internal test set (A) and external test set (B). While validated using the external test set, the diagnostic 
performance of the model declined. AUC, area under the curve.

 14390507, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

yc.13540 by <
Shibboleth>

-student@
m

anchester.ac.uk, W
iley O

nline L
ibrary on [30/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8  |    WANG et al.

model training. Second, due to the retrospective nature of the study, 
there were considerable missing clinical data. Although a random 
forest regression algorithm was used to fill in the missing data, the 
reliability of the results decreased. Third, we did not include patients 
with non-IPA fungal pneumonia due to insufficient data, which may 
reduce its clinical applicability. Lastly, patients in the external test 
set had fewer clinical features than those in the training set, which 
could be attributed to the fact that the patients were mainly from 
a tuberculosis specialist hospital. As a result, the false positive and 
false negative rates increased. However, this misclassification could 
be improved by expanding the sample size of IPA patients from dif-
ferent hospitals for model training.

In conclusion, IPA-NET provides a non-invasive, objective and 
reliable method for the early diagnosis of IPA. The diagnosis does 
not require manual intervention, only chest CT images and clinical 
features that are readily available in the early stages of the disease, 

making it a promising diagnostic tool in different medical settings 
such as outpatient clinics, wards, and particularly, intensive care 
units. However, due to the insufficient amount of patient data in 
the study, the resolution and applicability of the model may be de-
creased, which needs to be further improved in future studies.
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