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Abstract

Biodeterioration of polymeric materials a/ect a wide range of industries. Degradability of polymeric materials is a function of the struc-
tures of polymeric materials, the presence of degradative microbial population and the environmental conditions that encourage microbial
growth. Our understanding of polymer degradation has been advanced in recent years, but the subject is still inadequately addressed. This
is clearly indicated by the lack of information available on biodeterioration of polymeric materials, particularly the mechanisms involved
and the microorganisms participated. In this review, polymers are treated according to their origin and biodegradability, and grouped as
biopolymer, chemically modi6ed natural polymers and recalcitrant polymers. Selective examples are used to illustrate the mechanisms
and microorganisms involved in degradation of speci6c polymeric materials, and detection methods used for degradation and deterioration
tests are discussed. In addition, new detection techniques and preventive measures are also presented.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

All surfaces under natural and arti6cial conditions except
for extremely clean rooms are covered ubiquitously with
microorganisms. This unique characteristic of bacterial as-
sociation with surfaces was evident from the very beginning
of bacterial existence and has remained part of normal liv-
ing (Angles et al., 1993; Gu et al., 2000b,d; Marshall, 1976,
1992; W?achtersh?auser, 1988; Woese, 1987). The process in
which a complex community of microorganisms is estab-
lished on a surface is known as “microfouling” or formation
of bio6lm. Bio6lms, consisting of both microorganisms and
their extracellular polysaccharides, are highly diverse and
variable in both space and time. They are common on all sur-
faces in both terrestrial and aquatic environments (Caldwell
et al., 1997; Fletcher, 1996; Ford et al., 1991; Ford, 1993;
Geesey and White, 1990; Gehrke et al., 1998; Neu, 1996).
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Materials including metals (Gu et al., 2000a), inorganic
minerals (Gu et al., 1996d, 1998c, 2000c) and organic poly-
mers (Gu et al., 2000b) are susceptible to the formation of
microbial bio6lms under humid conditions, particularly
those in tropical and subtropical climates (Gu et al., 2000d).
Subsequent damage of materials is a result of natural pro-
cesses catalyzed by microorganisms. Complete degradation
of natural materials is an important part of the nutrients
cycling in the ecosystem (Swift et al., 1979). Bio6lm forma-
tion is a prerequisite for substantial corrosion and/or dete-
rioration of the underlying materials to take place (Arino et
al., 1997; Gu and Mitchell, 2001; Gu et al., 2000a–d; Hou,
1999; Saiz-Jimenez, 1995, 1997; Walch, 1992).

2. Bio�lms and fouling on materials

Bio6lm structures are highly organized and diverse on
surfaces (Bitton, 1980; Bonet et al., 1993; Breznak, 1984;
Caldwell et al., 1997; Costerton et al., 1978, 1994; Dalton
et al., 1994; Davey and O’Toole, 2000; Freeman and Lock,
1995; Guezennec et al., 1998; Kelley-Wintenberg and
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Montie, 1994; Lappin-Scott et al., 1992; L’Hostis et al.,
1997; O’Toole et al., 2000; Whit6eld, 1988; Wimpenny
and Colasanti, 1997; Wolfaardt et al., 1994; Zachary
et al., 1980). The speci6c architectural structures and or-
ganization of microorganisms on a particular surface are
generally materials and microorganisms speci6c, depend-
ing on the surface properties (Fletcher and Loeb, 1979;
van Loosdrecht et al., 1987, 1990; Wiencek and Fletcher,
1995) and the ambient environmental conditions includ-
ing externally supplied electrical current, cationic ions,
ionic concentrations, solution chemistry, and hydrodynamic
conditions (Caldwell and Lawrence, 1986; Korber et al.,
1989; Lawrence et al., 1987; Lewandowski et al., 1995;
Leyden and Basiulis, 1989; Little et al., 1986; Marshall
et al., 1971; Martrhamuthu et al., 1995; Neu, 1996; Pendyala
et al., 1996; Power and Marshall, 1988; Rijnaarts et al.,
1993; Schmidt, 1997; Sneider et al., 1994; Stoodley et al.,
1997). Because virtually all surfaces may act as substrate
for bacterial adhesion and bio6lm formation (Busscher et
al., 1990; Costerton et al., 1995; Geesey and White, 1990;
Geesey et al., 1996; Marshall, 1980), attack of materials by
microorganisms can take place either directly or indirectly,
depending on the speci6c microorganisms, chemical and
physical properties of the materials, and their environmental
conditions (Gu et al., 2000d). More speci6cally, important
factors a/ecting the rate of biodeterioration include mate-
rial composition (Bos et al., 1999; Busscher et al., 1990;
Gu et al., 2000b; Wiencek and Fletcher, 1995), molecular
weights, atomic composition and the chemical bonds in the
structure, the physical and chemical characteristics of the
surfaces (Becker et al., 1994; Caldwell et al., 1997; Callow
and Fletcher, 1994), the indigenous microNora, and envi-
ronmental conditions. Using microorganisms capable of de-
grading speci6c organic pollutants, the bio6lms immobilized
on material surfaces have important applications in degra-
dation of toxic pollutants, wastewater treatment and bio-
leaching (Bryers, 1990, 1994; Gu, 2001; Gu et al., 2001c;
Osswald et al., 1995; Sharp et al., 1998). In contrast, bio6lms
are undesirable in food processing, drinking-water distribu-
tion systems, petroleum transport pipeline, water-cooling
systems, on submerged engineering systems and structures,
medical implant materials. On molecular level, bacterial
attachment on surfaces is a process controlled by chemical
signaling between bacteria (Davies et al., 1998; McLean
et al., 1997; Reynolds and Fink, 2001) and the speci6c
chemical molecules involved have been elucidated as
N -(3-oxohexanoyl)-L-acylhomoserine lactones in Photo-
bacterium ;sheri,N -(3-hydroxybutanoyl)-L-acylhomoserine
in Vibrio harveyi, N -(3-oxododecanoyl)-L-acylhomo-
serine in Pseudomonas aeruginosa, N -(3-oxooctanoyl)-L-
acylhomoserine in Agrobacterium tumefaciens, and
�-butyrolactone in Streptomyces spp. (Davies et al., 1998;
Salmond et al., 1995; You et al., 1998).
Biofouling is a process de6ned as the undesirable accu-

mulation of microorganisms, their products and deposits
including minerals and organic materials, and macro-

organisms on substratum surfaces (Gu and Mitchell, 1995;
Nefedov et al., 1988; Novikova and Zaloguyev, 1985;
Solomin, 1985; Sunesson et al., 1995; Viktorov, 1994;
Viktorov and Novikova, 1985; Viktorov and IIyin, 1992;
Viktorov et al., 1993; Zaloguyev, 1985). The thin 6lm on
fouled surfaces usually consists of microorganisms em-
bedded in an organic matrix of biopolymers, which are pro-
duced by the microorganisms under natural conditions. In
addition, microbial precipitates, minerals, and corrosion
products may also coexist (Beveridge et al., 1997;
Konhauser et al., 1994; Liken, 1981; Lovley, 1991; Pierson
and Parenteau, 2000; Wilkinson and Stark, 1956; Zehnder
and Stumm, 1988). Microfouling by microorganisms can
serve as a prerequisite for the subsequent macrofouling by
invertebrates such as Balanus amphitrite, Janua brasilien-
sis, Ciona intestinalis (Gu et al., 1997c; Maki et al., 1990).
Industrial fouling is a complex phenomenon involving inter-
actions between chemical, biological and physical processes
resulting in enormous economic loss. To combat fouling
and corrosion, large quantities of biocides have been used
to control biofouling and as a result biocide resistance is an
emerging problem to our society.
Both metal and non-metallic materials immersed in

aqueous environments or under high humidity conditions
are equally susceptible to biofouling and biodeteriora-
tion (Characklis, 1990; Gu and Mitchell, 1995; Gu et al.,
1998b, 2000d; Jones-Meehan et al., 1994a, b; Knyazev
et al., 1986; Little et al., 1990; Thorp et al., 1994). Spe-
ci6c examples include medical implants (Dobbins et al.,
1989; Gu et al., 2001a–c; McLean et al., 1995; Mittelman,
1996), water pipes (Rogers et al., 1994), arti6cial coatings
(Edwards et al., 1994; Gu et al., 1998a; Jones-Meehan et
al., 1994b; Stern and Howard, 2000; Thorp et al., 1997),
rubber (Berekaa et al., 2000), ultrapure systems (Flemming
et al., 1994; Mittelman, 1995), porous media (Bouwer,
1992; Cunningham et al., 1990, 1991; Mills and Powelson,
1996; Rittman, 1993; Vandevivere, 1995; Vandevivere and
Kirchman, 1993; Williams and Fletcher, 1996), water and
wastewater treatment (Bryers and Characklis, 1990; Gillis
and Gillis, 1996; Rethke, 1994; Tall et al., 1995), oil6eld
(Lynch and Edyvean, 1988), space station (Gazenko et al.,
1990; Meshkov, 1994; Novikova et al., 1986; Pierson and
Mishra, 1992; Stranger-Joannesen et al., 1993; Zaloguyev,
1985) and magnetic diskettes (McCain and Mirocha, 1995).
Generally, biodeterioration is the undesirable degra-

dation of materials including both metals and polymers
in the presence of and by microorganisms. Damage of
materials may result in an early and unexpected con-
sequence and the problem is often translated to system
failure and economic loss. The term biodeterioration also
implicitly includes both biocorrosion and biodegradation
in this review. All three terms, corrosion, degradation
and deterioration are used in this review. In the follow-
ing sections, microbial deterioration and degradation of
polymeric materials are discussed for several groups of
materials.
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3. Biodeterioration of polymeric materials

Microorganisms are involved in the deterioration and
degradation of both synthetic and natural polymers
(Gu et al., 2000b), and very little is known about the
biodegradation of synthetic polymeric materials. The reason
is probably due to the recent development and manufac-
ture of this class of materials and the relatively slow rate
of degradation in natural environments. Since chemically
synthesized polymeric materials have become an impor-
tant part of our human society and have more diversi6ed
applications than traditional metals, issues related to poly-
mer deterioration and protection will receive increasingly
attention in the time to come.
Polymeric materials are very unique in chemical compo-

sition, physical forms, mechanical properties and applica-
tions. High versatility of the carbon to carbon and carbon
to non-carbon (C–C, C–R and C–H) bonds and substituent
groups, the possible con6gurations, stereochemistry and ori-
entation provide basis for variations of chemical structures
and stereochemistry (Odian, 1991). Very small variations
in the chemical structures may result in large di/erences
in term of biodegradability. Because of this structural ver-
satility, they are widely used in product packaging, insu-
lation, structural components, protective coatings, medical
implants, drug delivery carriers, slow-release capsules,
electronic insulation, telecommunication, aviation and space
industries, sporting and recreational equipment, building
consolidants, etc. In service, they are constantly exposed to
a range of natural and arti6cial conditions often involving
microbial contamination, resulting in aging, disintegra-
tion, and deterioration over time (Lemaire et al., 1992;
Pitt, 1992).

3.1. Microorganisms and general degradation

Polymers are potential substrates for heterotrophic
microorganisms including bacteria and fungi. Polymer
biodegradability depends on molecular weight, crystallinity
and physical forms (Gu et al., 2000b). Generally, an in-
crease in molecular weight results in a decline of polymer
degradability by microorganisms. In contrast, monomers,
dimers, and oligomers of a polymer’s repeating units are
much easily degraded and mineralized. High molecular
weights result in a sharp decrease in solubility making them
unfavorable for microbial attack because bacteria require
the substrate be assimilated through the cellular membrane
and then further degraded by cellular enzymes. However, it
should be pointed out that concurrent abiological and bio-
logical processes may facilitate the degradation of polymers.
At least two categories of enzymes are actively involved

in biological degradation of polymers: extracellular and
intracellular depolymerases (Doi, 1990; Gu et al., 2000b).
During degradation, exoenzymes from microorganisms
break down complex polymers yielding short chains or
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Fig. 1. Schematic diagram of polymer degradation under aerobic and
anaerobic conditions.

smaller molecules, e.g., oligomers, dimers, and monomers,
that are smaller enough to pass the semi-permeable outer
bacterial membranes, and then to be utilized as carbon and
energy sources (Fig. 1). The process is called depolymer-
ization. When the end products are inorganic species, e.g.,
CO2, H2O, or CH4, the degradation is called mineraliza-
tion. A commonly recognized rule is that the closer the
similarity of a polymeric structure to a natural molecule,
the easier it is to be degraded and mineralized. Polymers
like cellulose, chitin, pullusan, and PHB are all biologically
synthesized and can be completely and rapidly biodegraded
by heterotrophic microorganisms in a wide range of natural
environment (BQerenger et al., 1985; Byrom, 1991; Chahal
et al., 1992; Frazer, 1994; Gamerith et al., 1992; Gujer
and Zehnder, 1983; Gunjala and SulNita, 1993; Hamilton
et al., 1995; Hass et al., 1992; Hespell and O’Bryan-Shah,
1988; Kormelink and Voragen, 1993; Lee et al., 1985,
1987a, b, 1993; L?uthi et al., 1990a, b; MacDonald et al.,
1985; MacKenzie et al., 1987; Nakanishi et al., 1992;
Sonne-Hansen et al., 1993; Sternberg et al., 1977; T?orr?onen
et al., 1993; Wong et al., 1988; Yoshizako et al., 1992).
In addition, natural conditions also include environments
where anaerobic processes are the leading ones (Brune et
al., 2000; Fenchel and Finlay, 1995). Under such conditions,
the complete decomposition of a polymer will produce or-
ganic acids, CO2, CH4 and H2O. It is important to note that
biodeterioration and degradation of polymer substrate can
rarely reach 100% and the reason is that a small portion of
the polymer will be incorporated into microbial biomass,
humus and other natural products (Alexander, 1977; Atlas
and Bartha, 1997; Narayan, 1993).
Dominant groups of microorganisms and the degradative

pathways associated with polymer degradation are often
determined by the environmental conditions. When O2 is
available, aerobic microorganisms are mostly responsi-
ble for destruction of complex materials, with microbial
biomass, CO2, and H2O as the 6nal products (Fig. 1). In
contrast, under anoxic conditions, anaerobic consortia of
microorganisms are responsible for polymer deterioration.
The primary products will be microbial biomass, CO2, CH4
and H2O under methanogenic conditions (Barlaz et al.,
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1989a, b; Gu et al., 2000e, 2001; Gu and Mitchell, 2001)
or H2S, CO2 and H2O under sul6dogenic conditions
(Fig. 1). It is known that aerobic processes yield much
more energy and are capable of supporting a greater popu-
lation of microorganisms than anaerobic processes because
thermodynamically O2 is a more eScient electron acceptor
than SO2−4 and CO2. These conditions are widely found
in natural environments and can be simulated in the labo-
ratory with appropriate inocula. Both aerobic and strictly
anaerobic microorganisms are involved in the degradation
of polymers.
In this review, synthetic polymers are divided into three

groups: (1) degradable, (2) slowly degradable, and (3) re-
sistant. Natural polymers, e.g., cellulose, chitin, chitosan,
lignin, and polysaccharides, etc. are excluded.

3.2. Biodeterioration of polymers

3.2.1. Microbiologically synthesized polymers
Microorganisms are capable of manufacturing a range of

complex polymers under conditions when excessive carbon
source is available, e.g., C/N 10. The polymers include a
diverse class of polyesters (Doi, 1990; Stenb?uchel, 1991),
polysaccharides (Linton et al., 1991), silk (Kaplan et al.,
1991). Microbial degradation of polymers depends on their
molecular compositions, molecular weights and the pres-
ence of speci6c microorganisms on surfaces of materials.
Some can be almost completely utilized as a source of car-
bon and energy while others are only partially degraded. Ex-
amples of the former include the poly(hydroxyalkanoate)s
(PHAs) (Anderson and Dowes, 1990; Brandl et al., 1988;
Choi and Yoon, 1994; Doi, 1990; Nakayama et al., 1985;
Stenb?uchel, 1991; Stuart et al., 1995; Tanio et al., 1982);
�-poly(glutamic acid) (Cromwick and Gross, 1995), cellu-
lose acetates with degree of substitution values lower than
2.5 (Buchanan et al., 1993; Gross et al., 1993, 1995; Gu
et al., 1992b, c, 1993a–c, 1994b), polyethers (Kawai, 1987;
Kawai and Moriya, 1991; Kawai and Yamanaka, 1986),
polylactide (Gu et al., 1992b,c), polyurethanes (Blake et
al., 1998; Crabbe et al., 1994; El-Sayed et al., 1996; Filip,
1978; Gillatt, 1990; Gu et al., 1998b; Mitchell et al., 1996;
Nakajima-Kambe et al., 1995; Szycher, 1989), and natural
rubbers (Berekaa et al., 2000; Heisey and Papadatos, 1995).
Chemical structure of a polymer determines the ex-

tent of biodegradation. A general rule is that biologically
synthesized polymers are readily biodegradable in natu-
ral environments and synthetic polymers are either less
biodegradable or degraded very slowly. This widely ac-
cepted rule suggests that the degradation processes have
evolved through time and complexity of biochemical path-
ways may increase with the structure diversi6cation of
polymeric materials. However, the rate of degradation is
largely a/ected by the chemical structure, e.g., the C–C
and other types of bonds, molecular weights, structures and
con6guration as well as the participating microorganisms

and the environmental conditions. High molecular weight
polymers are less biodegradable or degraded at a slower
rate than those with low molecular weights. For example,
the rate of hydrolytic chain cleavage of ester bonds in the
following polymers is dependent on the co-polymer com-
position: poly(3-hydroxybutyrate-co-27% 4-hydroxybuty-
rate) [P(3HB-co-27% 4HB)]¿[P(3HB-co-17% 4HB)]¿
[P(3HB-co-10% 4HB)]¿ poly(3-hydroxybutyrate-co-
45% 3-hydroxybutyrate [P(3HB-co-45% 3HV)]¿[P(3HB-
co-71% 3HV)] (Doi, 1990). Similarly, the sequence of enzy-
matic hydrolysis is [P(HB-co-16% HV)]¿[P(HB-co-32%
HV)]¿PHB (Parikh et al., 1993). In addition, crystallinity
and stereochemistry of polymers also a/ect the rate of
degradation signi6cantly, but is rarely taken into account
(Budwill et al., 1992; Gu et al., 2000b,e). This characteris-
tic of molecules and its e/ects on degradation has received
attention recently (Kohler et al., 2000).

3.2.2. Poly(�-hydroxyalkanoates)
Bacterial poly(�-hydroxyalkanoates) are formed dur-

ing nutrient limited growth when the carbon source is in
excess, e.g., high C/N ratio, as energy storage materials
(Anderson and Dowes, 1990; Brandl et al., 1988; Doi,
1990; Holmes et al., 1985; Kim et al., 1995; Lemoigne,
1926; Stenb?uchel, 1991). Under condition of nutrient lim-
itation, these materials can be depolymerized and utilized
by microorganisms. They consist of homo or co-polymers
of [R]-�-hydroxyalkanoic acids. This polymer is a micro-
bial intracellular inclusion in the cytoplasmic Nuid in the
form of granules with diameters between 0.3 and 1:0 �m
(Stenb?uchel, 1991). Biopolymers may comprise as much
as 30–80% of the total cellular biomass. The polymer has
been isolated from Bacillus megaterium by extraction in
chloroform and has a molecular weight of approximately
105–106 with more than 50% in crystalline form (Gu et
al., unpublished data). Unlike other biopolymers, such as
polysaccharides, proteins and DNAs, PHB is thermoplas-
tic with a melting temperature around 180◦C, making it a
good candidate for thermoprocessing. Furthermore, PHB
and co-polymers have also been produced in genetic engi-
neered plants (John and Keller, 1996) and through chemical
synthesis (Kemnitzer et al., 1992, 1993), which provide
potential for commercial production in the future.
Both homopolymers and co-polymers can be degraded un-

der biologically active environments, e.g., soil (Albertsson
et al., 1987; Mas-CastellVa et al., 1995; Tsao et al., 1993),
sludge, compost (Gilmore et al., 1992, 1993; Gross et al.,
1993, 1995; Gu et al., 1993b), river water (Andrady et al.,
1993; Imam et al., 1992) and seawater (Andrady et al.,
1993; Imam et al., 1999; Sullivan et al., 1993; Wirsen and
Jannasch, 1993). Extracellular PHB depolymerases have
been isolated from Pseudomonas lemoignei (Lusty and
Doudoro/, 1966) and A. faecalis (Saito et al., 1989; Tanio
et al., 1982). Other bacteria capable of degrading these poly-
mers include Acidovorax facilis, Variovorax paradoxus,



J.-D. Gu / International Biodeterioration & Biodegradation 52 (2003) 69–91 73

Fig. 2. Scanning electron micrographs of (a) aerobic soil bacteria growing on surface of poly-�-hydroxybutyrate (PHB) (scale bar, 10 �m) and (b)
bacteria surrounding a PHB granule after incubation under mesophilic conditions (35◦C) (scale bar, 5 �m).

Pseudomonas syringae subsp. savastanoi, Comamonas
testosteroni, Cytophaga johnsonae, Bacillus megaterium,
B. polymyxa, and Streptomyces spp. (Mergaert et al.,
1993). The enzymatic degradation occurs initially at the
surfaces of the polyester 6lm after microbial colonization
(Fig. 2), and the rate of surface erosion is highly dependent
on both the molecular weight (degree of polymerization),
composition of the polyester, crystallinity and the dominant
species of bacteria.

3.3. Modi;ed natural polymers

3.3.1. Cellulose acetates (CAs)
Cellulose acetates (CAs) are a class of natural polymers

with chemical modi6cation to improve their processibility

and mechanical properties for di/erent applications (Bogan
and Brewer, 1985). Because the backbone is natural cellu-
lose, theoretically they can carry substitution values from as
low as near zero to as high as 3.0. Current knowledge is that
CAs with a degree of substitution values less than 2.5 can
be degraded in thermophilic compost (Gross et al., 1993,
1995; Gu et al., 1992b, c, 1993a–c, 1994b) or transformed
to solvents through biological catalyzed reactions (Downing
et al., 1987). Apparently, increasing the DS value makes
the polymers less degradable. As discussed above, it is clear
that slightly deviation from the natural structures will lead
to increasing resistance to deterioration and degradation.
CA degradation occurs more rapidly under oxic condi-

tions than anoxic conditions. The mechanisms of initial
degradation reaction are de-acetylation, which releases the
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Fig. 3. Scanning electron micrograph showing bacteria growing on surfaces of cellulose acetate.

substituted groups, followed by cleavage of the C–C
backbone. In this case, substituting group has a strong
inNuence on the degradability of polymer. It is also demon-
strated recently that the decrease of molecular weight by
cleavage of C–C chain and de-acetylation proceed simul-
taneously during degradation after CA reaches to a critical
value of substitution of approximately 1.0. Structural substi-
tution groups, and their numbers per repeating unit, a/ects
the degradation kinetics remarkably. For example, cellulose
acetate (CA) with a lower degree of substitution (DS) value
is more quickly degraded than those with higher substitution
values under both oxic and anoxic conditions (Buchanan
et al., 1993; Gross et al., 1993, 1995; Gu et al., 1992b, c,
1993a–c, 1994b) (Fig. 3). CAs with lower substitution val-
ues (∼= 0:82) also show relatively higher solubility which
is favored by microbial metabolism. During degradation of
CA, both molecular weight and degree of substitution de-
creased, suggesting that de-acetylation and decomposition
of the polymer backbone proceed simultaneously (Gu et al.,
1993c). Earlier data also suggested that CA with DS values
greater than 0.82 are recalcitrant to biodegradation and that
the limiting step is de-acetylation, followed by breaking of
the polymer carbon–carbon bonds (Reese, 1957). Current
results showing degradation of CA indicated that CA degra-
dation has been observed with DS values as high as 2.5.
Microorganisms capable of CA degradation are mostly

actinomyces, fungi and selective bacteria (Gross et al., 1993,
1995; Gu et al., 1992b, c, 1993a–c). One bacterium Pseudo-
monas paucimobilis was isolated for ability to degrade CA
with DS value 1.7 from a composting bioreactor containing
CA 6lms (Gross et al., 1993).

3.4. Synthetic polymers

3.4.1. Polyethers
One of the most commonly used synthetic polymers with

wide application and usage is polyethers. The polymers in-

clude polyethylene glycols (PEGs), polypropylene glycols
(PPGs) and polytetramethylene glycol (PTMGs). They are
used in pharmaceuticals, cosmetics, lubricants, inks, and sur-
factants. Contamination of natural waters, including coastal
waters and streams where wastewater is discharged have
been reported (Kawai, 1987, 2002).
Degradability of this class of polymers has been studied

under both oxic (Kawai, 1987, 2002; Kawai and Moriya,
1991; Kawai and Yamanaka, 1986) and anoxic conditions
(Dwyer and Tiedje, 1983; Frings et al., 1992; Schink and
Stieb, 1983). Their degradability is highly dependent on
molecular weight. Molecules with molecular weights higher
than 1000 have been considered resistant to biodegradation
(Kawai, 1987). However, degradation of PEGs with molec-
ular weights up to 20,000 has been reported (Kawai and
Yamanaka, 1989). The ability of a microNora to degrade
PEG molecules with high molecular weights is dependent
primarily on the ability of a syntrophic association of di/er-
ent bacteria to metabolize the chemicals (Fig. 4). For exam-
ple, Flavobacterium sp. and Pseudomonas sp. can form an
e/ective association and mineralize PEG completely. Dur-
ing degradation, PEG molecules are reduced by one glycol
unit after each oxidation cycle.
The central pathway of PEG degradation is cleavage of

an aliphatic ether linkage. In a co-culture of aerobic Flavo-
bacterium and Pseudomonas species, PEG degradation pro-
ceeds through dehydrogenation to form an aldehyde and
a further dehydrogenation to a carboxylic acid derivative
(Kawai, 1987; Kawai and Yamanaka, 1986). It is important
to note that either of the two bacteria in pure culture cannot
degrade PEG alone. Cellular contact between them seems
to be essential for e/ective activity (Kawai, 1987).
In the investigated Flavobaterium sp. and Pseudomonas

sp. system, three enzymes are involved in the complete
degradation of PEG (Kawai, 1987). PEG dehydrogenase,
PEG-aldehyde dehydrogenase, and PEG-carboxylate de-
hydrogenase (ether-cleaving) are all required. All of them
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Fig. 4. Scanning electron micrograph showing a pure culture of bacteria capable of utilizing polyethylene glycol as a source of carbon and energy.

are found in Flavobaterium sp., while only PEG-carboxylate
dehydrogenase is present in Pseudomonas sp. Using PEG
6000 as a sole substrate no degradation can be observed with
either of the two bacteria alone. In addition, the ether cleav-
age is extremely sensitive to the presence of glycoxylic acid.
However, Pseudomonas sp. though not directly involved
in the degradation, is capable of utilizing the toxic meta-
bolite that inhibits the activity of the Flavobacterium sp.
This connection appears to be the essential link for their
closely syntrophic association in achieving completely
degradation of PEG.
Under anaerobic condition, EG, PEG can also be degraded

(Dwyer and Tiedje, 1983) but only one bacterium Pelo-
bacter venetianus was reported (Schink and Stieb, 1983).

3.5. Recalcitrant polymers

3.5.1. Electronic insulation polyimides
Polymers used in electronic industries are chemically syn-

thesized with the objective of high strength and resistance
to degradation. Thermosetting polyimides are major class in
this application (Brown, 1982). Wide acceptance of poly-
imides in the electronics industry (Brown, 1982; Jensen,
1987; Lai, 1989; Verbicky, 1988; Verbiest et al., 1995)
has drawn attention to the stability of these materials. The
National Research Council (NRC, 1987) emphasized the
need to apply these polymers in the electronic industries be-
cause data acquisition, information processing and commu-
nication are critically dependent on materials performance.
The interlayering of polyimides and electronics in integrated
circuits prompted several studies on the interactions between
these two materials (Hahn et al., 1985; Kelley et al., 1987).
Polyimides are also widely used in load bearing applica-

tions, e.g., struts, chasses, and brackets in automotive and

aircraft structures, due to their Nexibility and compressive
strength. They are also used in appliance construction, cook-
ingware, and food packaging because of their chemical re-
sistance to oils, greases, and fats, microwave transparency,
and thermal resistance. Their electrical insulation properties
are ideally suited for use in the electrical and electronics
markets, especially as high temperature insulation materials
and passivation layers in the fabrication of integrated cir-
cuits and Nexible circuitry. In addition, the Nammability re-
sistance of this class of polymers may provide a halogen-free
Name-retardant material for aircraft interiors, furnishings,
and wire insulation. Other possible uses may include 6bers
for protective clothing, advanced composite structures, ad-
hesives, insulation tapes, foam, and optics operating at high
temperatures (Verbiest et al., 1995).
Electronic packaging polyimides are particularly useful

because of their outstanding performance and engineering
properties. It is only recently that biodeterioration of these
polymers was investigated using pyromellitic dianhydride
and 4; 4′-diaminodiphenyl ether with molecular weight (Mw
of 2:5 × 105) (Ford et al., 1995; Gu et al., 1994a, 1995a,
1996b, c, 1998a, b; Mitton et al., 1993, 1996, 1998). They
are susceptible to deterioration by fungi (Fig. 5) (Ford et
al., 1995; Gu et al., 1994a, 1995a, 1996b; Mitton et al.,
1993, 1998). Though bacteria were isolated from culture
containing the deteriorated polyimides, further tests did not
show comparable degradation by bacteria.
Our studies showed that the dielectric properties of poly-

imides could be altered drastically following growth of a
microbial bio6lm (Ford et al., 1995; Gu et al., 1995a, 1996b;
Mitton et al., 1993, 1998). This form of deterioration may
be slow under ambient conditions. However, the deteriora-
tion processes can be accelerated in humid conditions or in
enclosed environments, e.g., submarines, space vehicles,
aircraft, and other closed facilities. Very small changes of
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(a)

(b)

Fig. 5. Photograph and scanning electron micrograph showing: (a) the visible colonization of microorganisms in the inoculated cell containing polyimides
and (b) the microorganisms colonizing and growing on the surface of polyimides.

material insulation properties may result in serious and
catastrophic consequences of communications and control
systems.
Polyimide deterioration occurs through bio6lm forma-

tion and subsequent physical changes in the polymer. Using
electrochemical impedance spectroscopy (EIS) (Mansfeld,
1995; van Westing et al., 1994), a very sensitive tech-
nique for monitoring dielectric constant of polymers, fungal
growth on polyimides have been shown to yield distinctive
EIS spectra, indicative of failing resistivity. In the degra-
dation processes, two steps are involved during degrada-
tion: an initial decline in coating resistance is related to the
partial ingress of water and ionic species into the polymer
matrices. This is followed by further deterioration of the
polymer by activity of the fungi, resulting in a large decrease
in resistivity. Fungi involved include Aspergillus versicolor,
Cladosporium cladosporioides, and Chaetomium sp. (Gu
et al., 1995a, 1996a, e, 1997a, b, 1998a). The data support
the hypothesis that polyimides are susceptible to microbial
deterioration and also con6rm the versatility of EIS as a
method in evaluation of the biosusceptibility of polymers.

Initial isolation of microorganisms associated with dete-
rioration of polyimides indicated the presence of both fungi
and bacteria. Bacteria include Acinetobacter johnsonii,
Agrobacterium radiobacter, Alcaligenes denitri;cans,
Comamonas acidovorans, Pseudomonas spp, and Vibrio
anguillarum. These bacteria were not capable of degrad-
ing the polymer after inoculation while fungi were more
e/ective in degrading the polyimides.

3.5.2. Fiber-reinforced polymeric composite materials
Fiber-reinforced polymeric composite materials (FR-

PCMs) are newly developed materials important to
aerospace and aviation industries (Gu et al., 1994a, 1995a–d,
1996a, 1997a, b; Wagner, 1995; Wagner et al., 1996). The
increasing usage of FRPCMs as structural components of
public structures and particularly in aerospace application
has generated an urgent need to evaluate the biodegrad-
ability of this class of new materials. FRPCMs are also
susceptible to attack by microorganisms (Gu et al., 1997b).
It was suggested that impurities and additives that can pro-
mote microbial growth are implicated as potential sources
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Fig. 6. Scanning electron micrographs showing colonization of surfaces of: (a) 6ber-reinforced polymeric composite by both bacteria and fungi and (b)
graphite carbon 6bers by mostly fungi.

of carbon and energy for the environmental microorganisms
(Fig. 6).
In this area of research, two groups reported microbial

degradation of FRPCMs (Gu and Mitchell, 1995; Gu et al.,
1995b–d, 1996a, 1997a, b; Wagner et al., 1996). A mixed
culture of bacteria including a sulfate-reducing bacterium
was used to show the material deterioration (Wagner et al.,
1996). In contrast, Gu et al. (1994a, 1996a–c, 1997a, b)
used a fungal consortium originally isolated from degraded
polymers and a range of material composition including
Nuorinated polyimide/glass 6bers, bismaleimide/graphite
6bers, poly(ether-ether-ketone) (PEEK)/graphite 6bers,
and epoxy/graphite 6bers (Gu et al., 1995b). The fungal
consortium consisted of Aspergillus versicolor, Clado-
sporium cladosorioides, and a Chaetomium sp. Both bac-

teria and fungi are capable of growing on the graphite
6bers of FRPCMs, but only fungi have been shown to
cause deterioration detectable over more than 350 days (Gu
et al., 1995b, 1997a, b). It was also found that plasticizers
are biodegradable and utilized by natural microorganisms
as source of carbon and energy (Gu et al., 1994a, 1996a).
Phthalate and phthalate esters are the largely groups of
chemicals used as plasticizers in plastics manufacturing,
they are also detected at high concentrations in land6ll
leachate (Mersiosky, 2002) and degraded by aerobic mi-
croorganisms quickly (Fan et al., 2001; Wang et al., 2003).
Physical and mechanical tests were not suSciently sensitive
to detect any signi6cant physical changes in the materials
after the duration of exposure (Gu et al., 1997b; Thorp
et al., 1994). However, the resins were actively degraded,
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Fig. 7. Scanning electron micrograph of a pure culture of bacteria capable of degrading water-soluble polyurethane.

indicating that the materials were at risk of failure. It is clear
that both 6ber surface treatment and resin processing supply
enough carbon for microbial growth (Gu et al., 1995d). It
has become clear that FRPCMs are not immune to adhesion
and attack by microorganisms (Ezeonu et al., 1994a,b; Gu
et al., 1998b; Mitchell et al., 1996).
Natural populations of microorganisms are capable of

growth on surfaces of FRCPM coupons at both relatively
high (65–70%) and lower humidity conditions (55–65%)
(Gu et al., 1998b). The accumulation of fungi on surfaces of
composites develops into a thick bio6lm layer and decreases
the resistance to further environmental changes. However,
the resistivity of FRPCMs was found to decline signi6cantly
after the initial 3 months during a year of monitoring using
EIS (Gu et al., 1996c, 1997b). Clear di/erences resulting
from bio6lm development were detected on FRCPMs used
in aerospace applications (Gu et al., 1997b). Further study
indicated that many fungi are capable of utilizing chemicals,
e.g., plasticizers, surface treatment chemicals and impurities,
introduced during composite manufacture as carbon and en-
ergy sources (Gu et al., 1996a). Similarly, lignopolystyrene
graft copolymers were also susceptible to attack by fungi
(Milstein et al., 1992).
A critical question remains about the e/ect of FRPCM

deterioration on mechanical properties of the composite ma-
terials. Thorp et al. (1994) attempted to determine mechani-
cal changes in composite coupons after exposure to a fungal
culture. No signi6cant mechanical changes could be mea-
sured after 120 days exposure. They suggested that method-
ologies suSciently sensitive to detect surface changes need
to be utilized. Acoustic techniques have also been proposed
as a means of detecting changes in the physical properties
of the FRPCMs (Wagner et al., 1996).
Many bacteria were capable of growth on surfaces of FR-

PCMs and resins (Gu et al., 1996a). The bacteria are be-
lieved to be introduced onto the polymers during production.

Similar to the microorganisms isolated from polyimides,
bacteria are less e/ective in degrading the composites than
fungi (Gu et al., 1995b). Degradation of composites were
detected using electrochemical impedance spectroscopy.

3.5.3. Corrosion protective polymers
Corrosion protective coatings also have wide applica-

tion because the development of metallic materials and
susceptibility to corrosion both environmentally and micro-
biologically (Mitchell et al., 1996). Polymeric coatings are
designed to prevent contact of the underlying materials with
corrosive media and microorganisms. However, microbial
degradation of coatings may accelerate and severely dam-
age the underlying metals. Typical example includes the
corrosion of underground storage tanks. Natural bacterial
populations were found to readily form microbial bio6lms
on surfaces of coating materials, including epoxy and
polyamide primers and aliphatic polyurethanes (Blake et al.,
1998; Filip, 1978; Gu et al., 1998b; Stern and Howard,
2000; Thorp et al., 1997) (Fig. 7). Surprisingly, the addition
of biocide diiodomethyl-p-tolylsulfone into polyurethane
coatings did not inhibit bacterial attachment or growth
of bacteria e/ectively due to development of bio6lm and
bacterial resistance (Gu et al., 1998b; Mitchell et al., 1996).
Using EIS, both primers and aliphatic polyurethane

top-coatings were monitored for their response to biodegra-
dation by bacteria and fungi. Results indicated that primers
are more susceptible to degradation than polyurethane
(Gu et al., 1998b). The degradation process has similar
mechanisms as polyimides and FRPCMs as mentioned
above. Aliphatic polyurethane-degrading bacteria have been
isolated and one of them is Rhodococcus globerulus P1
base on 16S rRNA sequence (Gu, unpublished data).
Polyurethane-degrading microorganisms including

Fusarium solani, Curvularia senegalensis, Aureobasidium
pullulans and Cladosporidium sp were isolated (Crabbe
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et al., 1994) and esterase activity was detected with
C. senegalensis. A number of bacteria were also claimed
to be capable of degrading polyurethane and they are four
stains of Acinetobacter calcoaceticus, Arthrobacter glob-
iformis, Pseudomonas aeruginosa, Pseudomonas cepacia,
Pseudomonas putida, and two other Pseudomonas-like
species (El-Sayed et al., 1996). A Comamonas aci-
dovoran TB-35 was also reported (Akutsu et al., 1998;
Nakajima-Kambe et al., 1995, 1997). In addition, Pseu-
domonas chlororaphis was isolated and encoded a lipase
responsible for the degradation (Stern and Howard, 2000).

3.6. Resistance polymers

3.6.1. Polyethylene
Polyethylenes (PEs) of high and low density are primar-

ily used in product packaging as sheets and thin 6lms. Their
degradability in natural environments poses serious environ-
mental concerns due to their slow degradation rates under
natural conditions, and the hazard they present to freshwater
and marine animals. Prior exposure of PEs to UV promotes
polymer degradation. It is believed that polymer additives,
such as starch, antioxidants, coloring agents, sensitizers, and
plasticizers may signi6cantly alter the biodegradability of
the parent polymers (Karlsson et al., 1988). Degradation
rates may be increased by 2–4% following photosensitizer
addition. However, degradation is very slow, estimated in
decades. Crystallinity, surface treatment, additives, molec-
ular weight, and surfactants are all factors a/ecting the fate
and rate of PE degradation, and may accelerate the process.
Biodegradation of PEs has been studied extensively ear-

lier (Albertsson, 1980; Breslin, 1993; Breslin and Swanson,
1993; Imam and Gould, 1990), but the results were based on
PE blent with starch. For example, extracellular concentrates
of three Streptomyces species cultures were inoculated to
starch containing PE 6lms (Pometto et al., 1992, 1993). Sub-
sequently, PE was claimed to be degraded. Realizing that
degradation may occur and the extent could be extremely
small, conclusion on PE degradation should be treated with
caution. Other data describing degradation of PE containing
starch is questionable, and microbial metabolites may con-
taminate the PE surfaces and could be interpreted as degra-
dation products of the parent PE. Abiotic degradation of PE
is evident by the appearance of carbonyl functional groups
in abiotic environments. In contrast, an increase of double
bonds was observed when polymers showed weight loss re-
sulting from biodegradation (Albertsson et al., 1994). It was
proposed that microbial PE degradation is a two-step pro-
cess involving an initial abiotic photooxidation, followed by
a cleavage of the polymer carbon backbone. However, the
mechanism of the second step needs extensive analysis be-
fore plausible conclusions can be drawn con6dently. Lower
molecular weight PEs including paraSn can be biodegraded
and paraSn undergoes hydroxylation oxidatively to form
an alcohol group, followed by formation of carboxylic acid.

Fig. 8. Photographs showing the: (a) ancient writing script, (b) textile,
(c) bronze, and (d) books with molding development from a library in
the tropical region.

At higher temperatures, ketones, alcohols, aldehydes, lac-
tones, and carboxylic acids are formed abiotically in 6 weeks
(Albertsson et al., 1994). PE pipes used in gas distribution
systems may fail due to cracking. It is unlikely that biolog-
ical processes are involved (Zhou and Brown, 1995).

3.6.2. Polypropylenes
Polypropylenes (PPs) are also widely utilized as engi-

neering pipes and containers. Degradation of PPs results in
a decrease of their tensile strength and molecular weight.
The mechanism may involve the formation of hydroperox-
ides which destabalize the polymeric carbon chain to form a
carbonyl group (Cacciari et al., 1993; Severini et al., 1988).
Degradability of pure and high molecular weight PPs is still
an open question.

4. Biodeterioration of cultural heritage materials

Other materials of interest and importance to society for
protection from biodeterioration are cultural objects with
historical and cultural value. Examples of these materials are
bronze (Wang et al., 1991, 1993; Wu et al., 1992; Zou et al.,
1994), jade, ceramic and glass (Fuchs et al., 1991; Lauwers
and Heinen, 1974), lacquer, silk, papers (Adamo et al., 1998;
Arai, 2000; Fabbri et al., 1997; Florian, 1996; Zyska, 1996),
paintings (Fabbri et al., 1997; Piñar et al., 2001; R?olleke
et al., 1998), animal bones and shells, wood (Blanchette,
1995; King and Eggins, 1972), and mummi6ed bodies.
Fig. 8 shows ancient script on paper and textile, which have
been held in museum condition, and modern books from
library in tropic region. These materials are either in need
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Fig. 9. Photograph showing inhibition of microorganisms on surface of agar plates by a biocide in the discs placed on the agar plates.

for protection or su/er from potential biodeterioration due
to the growth of microorganisms which have been estab-
lished their population on surfaces of materials.
Signi6cant importance for protection and preservation of

them is on the social, culture, and archaeological and his-
torical value and scholarly meaning for future study. Con-
servation and preservation of them are a major task in all
museums worldwide and integrated research e/ort deserves
more attention in understanding the processes contributing
to the problem and proposing preventive measure or so-
lution. Apparently, such understanding and the preventive
measure can only be achieved by collective research e/ort
from biologists, chemists and conservators.

4.1. Consolidant polymers

In addition to the polymers and applications described
above, organic polymers are widely used in consolidation
of monuments and repairing of art works (Selwitz, 1992).
Utilization of these materials by common Nora of micro-
organisms transported in the atmosphere has been docu-
mented (Gu and Mitchell, unpublished data) and guidelines
are needed for systematic evaluation of candidate polymers
and their suitability in speci6c applications. Since these
polymers are mostly commercial products, polymer addi-
tives and other constituents are more likely to serve as a
source of carbon and energy for microbial growth when tem-
perature andmoisture (humidity) are favorable for the prolif-
eration of microorganisms (Gu et al., 1998b, 2000b; Tilstra
and Johnsonbaugh, 1993). Even organic pollutants can be
degraded by natural microorganisms (Gu and Berry, 1991,
1992; Gu et al., 1992a). These physical conditions are gen-
erally available particularly in developing countries where
resource is limited for preservation and conservation.
Among several consolidants including acryloids,

polyurethane, and epoxies, none of them is resistance to
microbial colonization (Gu, unpublished data). Though ap-
plication of biocides becomes a routine practice in the con-

servation of art works, the e/ectiveness of the addition is
questionable from our past experience (Fig. 9). This prob-
lem will be more serious than expected when eradication of
microorganisms becomes harder using these chemicals due
to resistant development in microorganisms after exposure
(Bingaman and Willingham, 1994).

5. Prevention and detection of biodeterioration

5.1. Preventive measures

Microbial growth and propagation on material surfaces
can be controlled by physical and chemical manipulations
of the material and the arti6cial environments. Preven-
tion against biodeterioration include surface engineering
so that attachment by and susceptibility to microorganisms
and then the fouling organisms can be reduced greatly
(Gu and Cheung, 2001; Mansfeld, 1994; Matamala et al.,
1994; Scamans et al., 1989; Williamson, 1994; Young,
1948). Basic information on microorganisms are widely
available from textbook (e.g., Madigan et al., 2000) and
microbiological manuals (Balow et al., 1992; Krieg and
Holt, 1984; Sneath et al., 1986; Staley et al., 1989; Williams
et al., 1989). As a control measure, lowering humidity
is a very e/ective means to slow down the growth of
microorganisms on surfaces in an enclosed environment
(Gu et al., 1998b) and prevention against potential con-
tamination will prolong the life time of the objects. Under
museum conditions, sensitive art pieces should be care-
fully protected environmentally and the numbers of visitors
should also be controlled to maintain a relatively constant
temperature and humidity, and to decrease chance of con-
tamination.
Basic measures in control of biodeterioration should be

focused on the surface especially the initial population of
organisms. Without a better understanding of what is on
the surface, subsequent protection measure cannot be tar-
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get speci6c. In this area, recent development in molecular
technique involving DNA based information allows a bet-
ter examination of any surface due to the shortcomings with
traditional microbiological techniques (Amann et al., 1995).
Coupling the understanding of surface microbial ecology
using molecular techniques and then controlling measure,
better results can be achieved. By modi6cation of the micro-
bial community, Sand et al. (1991) proposed oxygenation
as a means of alleviating the propagation of SRBs under
anoxic conditions. At the same time, biocides can be e/ec-
tive in controlling bio6lms and subsequent deterioration of
materials to some extent (Bell and Chadwick, 1994; Bell
et al., 1992; Wake6eld, 1997). Other attempts at community
modi6cation include precipitation of microbially produced
H2S by ferrous chloride (FeCl2) (Morton et al., 1991), and
displacement of Thiobacillus sp. by heterotrophic bacteria
(Padival et al., 1995). All of these e/orts have met with
limited success.

5.2. Use of biocides

Biocides are commonly applied in repairing, cleaning and
maintenance of artworks. Chlorine, iodine and other organic
biocidal compounds are used widely and routinely in con-
trolling bio6lms which cause corrosion and deterioration
of a wide range of materials in industries (Bloom6eld and
Megid, 1994; Cargill et al., 1992; Chen and Stewart, 1996;
Stewart et al., 1996) and conservation of art (Bianchi et al.,
1980; Bingaman and Willingham, 1994). These chemicals
have been shown to be ine/ective in killing bio6lm bacteria
(Gu et al., 1998b; Huang et al., 1996; Keevil and Macker-
ness, 1990; Koenig et al., 1995; Liu et al., 1998; L?u et al.,
1984, 1989; McFeters, 1991; McFeters et al., 1995; Moore
and Postle, 1994; Myers, 1988; Pyle et al., 1992; Reinsel
et al., 1996; Rossmoore and Rossmoore, 1993; Srinivasan
et al., 1995; Stewart, 1996; Stewart et al., 1996; Suci et al.,
1998; Wake6eld, 1997; Xu et al., 1996; Yu and McFeters,
1994). In addition to their environmental unacceptability
most of the time because of toxicity, biocides induce the de-
velopment of bio6lms that are highly resistant to the levels
of chlorine normally utilized to prevent biocorrosion. Or-
ganic biocides, used to prevent bacterial growth in industrial
systems, may selectively enrich population of microorgan-
isms capable of biocide resistance (Fig. 9). No solution to
these problems is currently available and alternative biocides
have been screened from natural products (Abdel-Hafez and
El-Said, 1997; Bell and Chadwick, 1994; Bell et al., 1992;
Br?ozel and Cloete, 1993). Current research by materials sci-
entists is focused on the prevention of adhesion of corrosive
microorganisms to surfaces through surface treatments and
modi6cation (Costerton et al., 1988).
Since bacteria are capable of forming bio6lms on surfaces

of materials, future tests should be focused on the dynam-
ics of bio6lm and quanti6cation than descriptively showing
bio6lm of scanning electron micrographs. In particular, test

of assaying eScacy of biocide should be conducted based
on bio6lm condition than liquid culture eScacy (Gu et al.,
1998b, 2000d). This major discrepancy has not fully been
resolved. Because bio6lm bacteria are more resistance to an-
tibiotics and biocides, tests based on planktonic cells are not
truly representative of their actual conditions on surfaces of
materials. New initiative is needed for innovative methodol-
ogy to assess biocidal e/ects using surface oriented assays.

5.3. Testing methodologies

Another critical issue in this area is the standardization of
test methodologies. Current available methods are certainly
not representative of the actual conditions for each individ-
ual case, but very little Nexibility is o/ered in the methods.
Simulation testing of microbial growth on materials includes
only a small selection of fungal species (ASTM, 1993a–e)
while deterioration under natural environment is hardly car-
ried out by those species. Furthermore, biodeterioration as-
sessment has hardly been quantitative because presence of
bacteria or fungi on surface of materials has generally been
assumed as biodeterioration (Zachary et al., 1980). Actu-
ally, the interpretation is about the potential for biodeteriora-
tion not actually biodeterioration and biodegradation. More
methods are now becoming available for test the biodeterio-
ration and biodegradation of organic materials, particularly
polymers in various chemical composition and degradabil-
ity (Gross et al., 1993, 1995; Gu et al., 1992b, c, 1993a–c,
1994b, 2000b, d). Both gravimetric method and respiro-
metry have been tested and used successfully with CAs and
PHB as testing polymers. Highly sensitive and quantitative
method has also been introduced in evaluation of polymer
integrity using EIS (Gu et al., 1998a, 1995a–d, 2000b). With
the latest advances, new techniques should be adopted in
tests according to the characteristics of materials and their
application environments, so that data generated on the ma-
terials will be a quantitative description of the biological
deterioration potential.
Prevention against bio6lm formation and biodeterioration

include surface engineering so that attachment and suscep-
tibility to microorganisms and the fouling organisms can
be reduced greatly (Mansfeld, 1994; Matamala et al., 1994;
Scamans et al., 1989; Williamson, 1994; Young, 1948).
Early detection is an important component in diagnosis and
prevention of severe deterioration of materials (Li et al.,
1997). It should also be pointed out that new detection tech-
nologies including optical 6ber (Bacci, 1995), DNA probes
and microarray (Raychaudhuri et al., 2001; Salama et al.,
2000) will 6nd valuable applications in this exiciting 6eld
of research and development in the near future.

6. Conclusions

Microorganisms are involved in the degradation and de-
terioration of polymers under both aerobic and anaerobic
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conditions. We have only recently begun to understand the
complex nature of interactions between the microNora and
deterioration of polymeric materials.
Degradation mechanisms are speci6cally related to the

chemical structures, molecular weights, presence of the
microorganisms and environmental conditions. Protection
of materials can be achieved to some extent through surface
engineering and control of the physical, chemical and bio-
logical environments, so that the material surfaces can be as
inert as possible. Application of biocides has been widely
used but the development of resistant bacteria is a more
serious problem than even anticipated before. Utilization
of molecular techniques to detect speci6c groups of micro-
organisms involved in the degradation process will allow
a better understanding of the organization of the microbial
community involved in the attack of materials. Control
methods should be developed based on the combined infor-
mation o the material characteristics and microbial specie
composition.
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